These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38753349)

  • 1. Induced Huge Optical Activity in Nanoplatelet Superlattice.
    Gao X; Yang X; Lv J; Zhao L; Sui X; Zhang X; Xie Y; Tang Z
    J Am Chem Soc; 2024 May; 146(21):14697-14704. PubMed ID: 38753349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembled inorganic chiral superstructures.
    Lv J; Gao X; Han B; Zhu Y; Hou K; Tang Z
    Nat Rev Chem; 2022 Feb; 6(2):125-145. PubMed ID: 37117298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thickness-Tunable Self-Assembled Colloidal Nanoplatelet Films Enable Ultrathin Optical Gain Media.
    Erdem O; Foroutan S; Gheshlaghi N; Guzelturk B; Altintas Y; Demir HV
    Nano Lett; 2020 Sep; 20(9):6459-6465. PubMed ID: 32787166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chiral CdSe nanoplatelets as an ultrasensitive probe for lead ion sensing.
    Wang X; Hao J; Cheng J; Li J; Miao J; Li R; Li Y; Li J; Liu Y; Zhu X; Liu Y; Sun XW; Tang Z; Delville MH; He T; Chen R
    Nanoscale; 2019 May; 11(19):9327-9334. PubMed ID: 30911741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of Nano-superstructures and Their Optical Properties.
    Qi F; Jeong KJ; Gong J; Tang Z
    Acc Chem Res; 2022 Sep; 55(17):2425-2438. PubMed ID: 35977155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic assembly of plasmonic chiral superstructures with dynamic chiroptical responses.
    Wu C; Fan Q; Li Z; Ye Z; Yin Y
    Mater Horiz; 2024 Feb; 11(3):680-687. PubMed ID: 37987179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GoldHelix: Gold Nanoparticles Forming 3D Helical Superstructures with Controlled Morphology and Strong Chiroptical Property.
    Cheng J; Le Saux G; Gao J; Buffeteau T; Battie Y; Barois P; Ponsinet V; Delville MH; Ersen O; Pouget E; Oda R
    ACS Nano; 2017 Apr; 11(4):3806-3818. PubMed ID: 28358490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-directing chiral liquid crystal nanostructures: from 1D to 3D.
    Bisoyi HK; Li Q
    Acc Chem Res; 2014 Oct; 47(10):3184-95. PubMed ID: 25181560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of Chiral, Helical Nanoparticle Superstructures: Progress and Prospects.
    Mokashi-Punekar S; Zhou Y; Brooks SC; Rosi NL
    Adv Mater; 2020 Oct; 32(41):e1905975. PubMed ID: 31815327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emergence of Nanoplatelet Light-Emitting Diodes.
    Xiao P; Huang J; Yan D; Luo D; Yuan J; Liu B; Liang D
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30096754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constructing chiral gold nanorod oligomers using a spatially separated sergeants-and-soldiers effect.
    Meng D; Li X; Gao X; Zhang C; Ji Y; Hu Z; Ren L; Wu X
    Nanoscale; 2021 Jun; 13(21):9678-9685. PubMed ID: 34018541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical Activity and Excitonic Characteristics of Chiral CdSe Quantum Dots.
    Han P; Du T; Yang X; Zhao Y; Zhou S; Zhao J
    J Phys Chem Lett; 2024 Mar; 15(12):3249-3257. PubMed ID: 38488567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous Symmetry Breaking of Achiral Molecules Leading to the Formation of Homochiral Superstructures that Exhibit Mechanoluminescence.
    Liu ZF; Ye XY; Chen L; Niu LY; Jin WJ; Zhang S; Yang QZ
    Angew Chem Int Ed Engl; 2024 Feb; 63(8):e202318856. PubMed ID: 38169084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoplatelet Superlattices by Tin-Induced Transformation of FAPbI
    Hazra V; Mondal S; Pattanayak P; Bhattacharyya S
    Small; 2024 Feb; 20(8):e2304920. PubMed ID: 37817355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chiral Superstructure Mesophases of Achiral Bent-Shaped Molecules - Hierarchical Chirality Amplification and Physical Properties.
    Le KV; Takezoe H; Araoka F
    Adv Mater; 2017 Jul; 29(25):. PubMed ID: 27966798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple mechanism for emergent chirality in achiral hard particle assembly.
    Carmichael SP; Shell MS
    J Chem Phys; 2013 Oct; 139(16):164705. PubMed ID: 24182062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanophotonic Platforms for Chiral Sensing and Separation.
    Solomon ML; Saleh AAE; Poulikakos LV; Abendroth JM; Tadesse LF; Dionne JA
    Acc Chem Res; 2020 Mar; 53(3):588-598. PubMed ID: 31913015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smart Reversible Transformations between Chiral Superstructures of Copper Clusters for Optical and Chiroptical Switching.
    Han Z; Si Y; Dong XY; Hu JH; Zhang C; Zhao XH; Yuan JW; Wang Y; Zang SQ
    J Am Chem Soc; 2023 Mar; 145(11):6166-6176. PubMed ID: 36912642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endowing Metal-Organic Coordination Materials with Chiroptical Activity by a Chiral Anion Strategy.
    Zhao YY; Li ZQ; Gong ZL; Bernhard S; Zhong YW
    Chemistry; 2024 May; 30(28):e202400685. PubMed ID: 38469986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Assembly of Chiral Plasmonic Nanostructures.
    Lan X; Wang Q
    Adv Mater; 2016 Dec; 28(47):10499-10507. PubMed ID: 27327654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.