BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 3875343)

  • 21. Single amino acid exchanges in FAD-binding domains of squalene epoxidase of Saccharomyces cerevisiae lead to either loss of functionality or terbinafine sensitivity.
    Ruckenstuhl C; Eidenberger A; Lang S; Turnowsky F
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):1197-201. PubMed ID: 16246080
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrochemical and glucose oxidase coenzyme activity of flavin adenine dinucleotide covalently attached to glassy carbon at the adenine amino group.
    Miyawaki O; Wingard LB
    Biochim Biophys Acta; 1985 Jan; 838(1):60-8. PubMed ID: 3967047
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrogenase encapsulation into red blood cells and regeneration of electron acceptor.
    Axley MJ; Dad LK; Harabin AL
    Biotechnol Appl Biochem; 1996 Oct; 24(2):95-100. PubMed ID: 8865603
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new assay method of gamma-glutamyltransferase with 4-aminobenzoate hydroxylase from Agaricus bisporus as a coupling enzyme.
    Mizutani Y; Nakano Y; Yamada S; Samejima T
    Clin Chim Acta; 1999 Sep; 287(1-2):83-97. PubMed ID: 10509898
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation and some properties of NAD+ reductase of the green photosynthetic bacterium Prosthecochloris aestuarii.
    Shioi Y; Takamiya K; Nishimura M
    J Biochem; 1976 Feb; 79(2):361-71. PubMed ID: 5430
    [TBL] [Abstract][Full Text] [Related]  

  • 26. omega-Oxidation of fatty acids and the acetylation p-aminobenzoic acid.
    Hemmelgarn E; Schumann WC; Margolis J; Kumaran K; Landau BR
    Biochim Biophys Acta; 1979 Feb; 572(2):298-306. PubMed ID: 311659
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Bacterial Multidomain NAD-Independent d-Lactate Dehydrogenase Utilizes Flavin Adenine Dinucleotide and Fe-S Clusters as Cofactors and Quinone as an Electron Acceptor for d-Lactate Oxidization.
    Jiang T; Guo X; Yan J; Zhang Y; Wang Y; Zhang M; Sheng B; Ma C; Xu P; Gao C
    J Bacteriol; 2017 Nov; 199(22):. PubMed ID: 28847921
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flavin conformational changes in the catalytic cycle of p-hydroxybenzoate hydroxylase substituted with 6-azido- and 6-aminoflavin adenine dinucleotide.
    Palfey BA; Ballou DP; Massey V
    Biochemistry; 1997 Dec; 36(50):15713-23. PubMed ID: 9398300
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Purification and characterization of 2,4,6-trichlorophenol-4-monooxygenase, a dehalogenating enzyme from Azotobacter sp. strain GP1.
    Wieser M; Wagner B; Eberspächer J; Lingens F
    J Bacteriol; 1997 Jan; 179(1):202-8. PubMed ID: 8981999
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Arylamine N-acetyltransferase responsible for acetylation of 2-aminophenols in Streptomyces griseus.
    Suzuki H; Ohnishi Y; Horinouchi S
    J Bacteriol; 2007 Mar; 189(5):2155-9. PubMed ID: 17158669
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Purification and properties of the Pichia guilliermondii acid nucleotide pyrophosphatase hydrolyzing flavin adeninine dinucleotide].
    Tesliar GE; Strugovshchikova LP; Shavlovskiĭ GM
    Ukr Biokhim Zh (1978); 1980; 52(1):24-31. PubMed ID: 6103593
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Purification and properties of 4-hydroxybenzoate 1-hydroxylase (decarboxylating), a novel flavin adenine dinucleotide-dependent monooxygenase from Candida parapsilosis CBS604.
    Eppink MH; Boeren SA; Vervoort J; van Berkel WJ
    J Bacteriol; 1997 Nov; 179(21):6680-7. PubMed ID: 9352916
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaction of mushroom tyrosinase with aromatic amines, o-diamines and o-aminophenols.
    Gasowska B; Kafarski P; Wojtasek H
    Biochim Biophys Acta; 2004 Aug; 1673(3):170-7. PubMed ID: 15279888
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of the mechanism of the NADH-dependent polysulfide reductase (Npsr) from Shewanella loihica PV-4: formation of a productive NADH-enzyme complex and its role in the general mechanism of NADH and FAD-dependent enzymes.
    Lee KH; Humbarger S; Bahnvadia R; Sazinsky MH; Crane EJ
    Biochim Biophys Acta; 2014 Sep; 1844(9):1708-17. PubMed ID: 24981797
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolism of procainamide and p-aminobenzoic acid in patients with chronic liver disease.
    du Souich P; Erill S
    Clin Pharmacol Ther; 1977 Nov; 22(5 Pt 1):588-95. PubMed ID: 303166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biochemical and physical characterization of the active FAD-containing form of nitroalkane oxidase from Fusarium oxysporum.
    Gadda G; Fitzpatrick PF
    Biochemistry; 1998 Apr; 37(17):6154-64. PubMed ID: 9558355
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aspartate 120 of Escherichia coli methylenetetrahydrofolate reductase: evidence for major roles in folate binding and catalysis and a minor role in flavin reactivity.
    Trimmer EE; Ballou DP; Galloway LJ; Scannell SA; Brinker DR; Casas KR
    Biochemistry; 2005 May; 44(18):6809-22. PubMed ID: 15865426
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pusillimonas sp. 5HP degrading 5-hydroxypicolinic acid.
    Karvelis L; Gasparavičiūtė R; Klimavičius A; Jančienė R; Stankevičiūtė J; Meškys R
    Biodegradation; 2014 Feb; 25(1):11-9. PubMed ID: 23543363
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spectroscopic and kinetic properties of a recombinant form of the flavin domain of spinach NADH: nitrate reductase.
    Quinn GB; Trimboli AJ; Prosser IM; Barber MJ
    Arch Biochem Biophys; 1996 Mar; 327(1):151-60. PubMed ID: 8615685
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coordinated production and utilization of FADH2 by NAD(P)H-flavin oxidoreductase and 4-hydroxyphenylacetate 3-monooxygenase.
    Louie TM; Xie XS; Xun L
    Biochemistry; 2003 Jun; 42(24):7509-17. PubMed ID: 12809507
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.