BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38753977)

  • 1. Backbone Modification in a Protein Hydrophobic Core.
    Lin Y; Horne WS
    Chemistry; 2024 May; ():e202401890. PubMed ID: 38753977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implications of the unfolded state in the folding energetics of heterogeneous-backbone protein mimetics.
    Santhouse JR; Leung JMG; Chong LT; Horne WS
    Chem Sci; 2022 Oct; 13(40):11798-11806. PubMed ID: 36320921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Foldamer Tertiary Structure through Sequence-Guided Protein Backbone Alteration.
    George KL; Horne WS
    Acc Chem Res; 2018 May; 51(5):1220-1228. PubMed ID: 29672021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein Backbone Alteration in Non-Hairpin β-Turns: Impacts on Tertiary Folded Structure and Folded Stability.
    Harmon TW; Horne WS
    Chembiochem; 2023 Jun; 24(11):e202300113. PubMed ID: 36920327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of design strategies for α-helix backbone modification in a protein tertiary fold.
    Tavenor NA; Reinert ZE; Lengyel GA; Griffith BD; Horne WS
    Chem Commun (Camb); 2016 Mar; 52(19):3789-92. PubMed ID: 26853882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of folded structure and folding thermodynamics in heterogeneous-backbone proteomimetics.
    Santhouse JR; Rao SR; Horne WS
    Methods Enzymol; 2021; 656():93-122. PubMed ID: 34325801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical Shifts of Artificial Monomers Used to Construct Heterogeneous-Backbone Protein Mimetics in Random Coil and Folded States.
    Rao SR; Harmon TW; Heath SL; Wolfe JA; Santhouse JR; O'Brien GL; Distefano AN; Reinert ZE; Horne WS
    Pept Sci (Hoboken); 2023 Mar; 115(2):. PubMed ID: 37397503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous-Backbone Proteomimetic Analogues of Lasiocepsin, a Disulfide-Rich Antimicrobial Peptide with a Compact Tertiary Fold.
    Cabalteja CC; Lin Q; Harmon TW; Rao SR; Di YP; Horne WS
    ACS Chem Biol; 2022 Apr; 17(4):987-997. PubMed ID: 35290019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneous-Backbone Foldamer Mimics of Zinc Finger Tertiary Structure.
    George KL; Horne WS
    J Am Chem Soc; 2017 Jun; 139(23):7931-7938. PubMed ID: 28509549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The slow folding reaction of barstar: the core tryptophan region attains tight packing before substantial secondary and tertiary structure formation and final compaction of the polypeptide chain.
    Sridevi K; Juneja J; Bhuyan AK; Krishnamoorthy G; Udgaonkar JB
    J Mol Biol; 2000 Sep; 302(2):479-95. PubMed ID: 10970747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomimetic Zinc Finger Domains with Modified Metal-binding β-Turns.
    Rao SR; Horne WS
    Pept Sci (Hoboken); 2020 Sep; 112(5):. PubMed ID: 33733039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Desolvation and development of specific hydrophobic core packing during Im7 folding.
    Bartlett AI; Radford SE
    J Mol Biol; 2010 Mar; 396(5):1329-45. PubMed ID: 20053361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust folding of a de novo designed ideal protein even with most of the core mutated to valine.
    Koga R; Yamamoto M; Kosugi T; Kobayashi N; Sugiki T; Fujiwara T; Koga N
    Proc Natl Acad Sci U S A; 2020 Dec; 117(49):31149-31156. PubMed ID: 33229587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction and analysis of surface hydrophobic residues in tertiary structure of proteins.
    Malleshappa Gowder S; Chatterjee J; Chaudhuri T; Paul K
    ScientificWorldJournal; 2014; 2014():971258. PubMed ID: 24672404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring sequence/folding space: folding studies on multiple hydrophobic core mutants of ubiquitin.
    Benítez-Cardoza CG; Stott K; Hirshberg M; Went HM; Woolfson DN; Jackson SE
    Biochemistry; 2004 May; 43(18):5195-203. PubMed ID: 15122885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of altered backbone composition on the folding kinetics and mechanism of an ultrafast-folding protein.
    Santhouse JR; Leung JMG; Chong LT; Horne WS
    Chem Sci; 2024 Jan; 15(2):675-682. PubMed ID: 38179541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Buried hydrophobic side-chains essential for the folding of the parallel beta-helix domains of the P22 tailspike.
    Betts S; Haase-Pettingell C; Cook K; King J
    Protein Sci; 2004 Sep; 13(9):2291-303. PubMed ID: 15322277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Core formation in apomyoglobin: probing the upper reaches of the folding energy landscape.
    Gulotta M; Gilmanshin R; Buscher TC; Callender RH; Dyer RB
    Biochemistry; 2001 May; 40(17):5137-43. PubMed ID: 11318635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomimetics as protein-inspired scaffolds with defined tertiary folding patterns.
    Horne WS; Grossmann TN
    Nat Chem; 2020 Apr; 12(4):331-337. PubMed ID: 32029906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophobic core packing in the SH3 domain folding transition state.
    Northey JG; Di Nardo AA; Davidson AR
    Nat Struct Biol; 2002 Feb; 9(2):126-30. PubMed ID: 11786916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.