These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38754143)

  • 1. Synthesis of core-shell silicon-carbon nanocomposites via in-situ molten salt-based reduction of rice husks: A promising approach for the manufacture of lithium-ion battery anodes.
    Tao W; Xu C; Gao P; Zhang K; Zhu X; Wu D; Chen J
    J Colloid Interface Sci; 2024 Sep; 669():902-911. PubMed ID: 38754143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-Organic Frameworks-Derived Mesoporous Si/SiO
    Majeed MK; Ma G; Cao Y; Mao H; Ma X; Ma W
    Chemistry; 2019 Sep; 25(51):11991-11997. PubMed ID: 31290576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of SiO
    Guo X; Li W; Geng P; Zhang Q; Pang H; Xu Q
    J Colloid Interface Sci; 2022 Jan; 606(Pt 1):784-792. PubMed ID: 34419817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Embedding Atomically Dispersed Iron Sites in Nitrogen-Doped Carbon Frameworks-Wrapped Silicon Suboxide for Superior Lithium Storage.
    Guo X; Xu H; Li W; Liu Y; Shi Y; Li Q; Pang H
    Adv Sci (Weinh); 2023 Feb; 10(4):e2206084. PubMed ID: 36470654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double Core-Shell Si@C@SiO
    Yang T; Tian X; Li X; Wang K; Liu Z; Guo Q; Song Y
    Chemistry; 2017 Feb; 23(9):2165-2170. PubMed ID: 27995676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of a Si/SiO
    Zeng L; Liu R; Han L; Luo F; Chen X; Wang J; Qian Q; Chen Q; Wei M
    Chemistry; 2018 Apr; 24(19):4841-4848. PubMed ID: 29194824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Pyrolysis Concerted Formation of Si/C Hybrids during Molten Salt Electrolysis of SiO
    Weng W; Zeng C; Xiao W
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9156-9163. PubMed ID: 30789694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microsized Porous SiO
    Cui J; Cui Y; Li S; Sun H; Wen Z; Sun J
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):30239-30247. PubMed ID: 27762546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simplified Synthesis of Biomass-Derived Si/C Composites as Stable Anode Materials for Lithium-Ion Batteries.
    Majeed MK; Saleem A; Wang C; Song C; Yang J
    Chemistry; 2020 Aug; 26(46):10544-10549. PubMed ID: 32453469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rice husk-originating silicon-graphite composites for advanced lithium ion battery anodes.
    Kim HJ; Choi JH; Choi JW
    Nano Converg; 2017; 4(1):24. PubMed ID: 28983451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silicon anodes protected by a nitrogen-doped porous carbon shell for high-performance lithium-ion batteries.
    Zhu J; Yang J; Xu Z; Wang J; Nuli Y; Zhuang X; Feng X
    Nanoscale; 2017 Jun; 9(25):8871-8878. PubMed ID: 28632270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual carbon and void space confined SiO
    Chen W; Kuang S; Wei H; Wu P; Tang T; Li H; Liang Y; Yu X; Yu J
    J Colloid Interface Sci; 2022 Mar; 610():583-591. PubMed ID: 34903355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-Step Synthesis of Multi-Core-Void@Shell Structured Silicon Anode for High-Performance Lithium-Ion Batteries.
    Bi X; Tang T; Shi X; Ge X; Wu W; Zhang Z; Wang J
    Small; 2022 Sep; 18(37):e2200796. PubMed ID: 35961951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalable Synthesis of Pore-Rich Si/C@C Core-Shell-Structured Microspheres for Practical Long-Life Lithium-Ion Battery Anodes.
    An W; He P; Che Z; Xiao C; Guo E; Pang C; He X; Ren J; Yuan G; Du N; Yang D; Peng DL; Zhang Q
    ACS Appl Mater Interfaces; 2022 Mar; 14(8):10308-10318. PubMed ID: 35175030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual Core-Shell Structured Si@SiO
    Jiang B; Zeng S; Wang H; Liu D; Qian J; Cao Y; Yang H; Ai X
    ACS Appl Mater Interfaces; 2016 Nov; 8(46):31611-31616. PubMed ID: 27933979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational Design of Ion-Conductive Layer on Si Anode Enables Superior-Stable Lithium-Ion Batteries.
    Wang Z; Yao M; Luo H; Xu C; Tian H; Wang Q; Wu H; Zhang Q; Wu Y
    Small; 2024 Feb; 20(5):e2306428. PubMed ID: 37759404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bamboo leaf derived ultrafine Si nanoparticles and Si/C nanocomposites for high-performance Li-ion battery anodes.
    Wang L; Gao B; Peng C; Peng X; Fu J; Chu PK; Huo K
    Nanoscale; 2015 Sep; 7(33):13840-7. PubMed ID: 26098990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery of porous silicon from waste crystalline silicon solar panels for high-performance lithium-ion battery anodes.
    Zhang C; Ma Q; Cai M; Zhao Z; Xie H; Ning Z; Wang D; Yin H
    Waste Manag; 2021 Nov; 135():182-189. PubMed ID: 34509770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Si/SiO
    Park E; Kim J; Chung DJ; Park MS; Kim H; Kim JH
    ChemSusChem; 2016 Oct; 9(19):2754-2758. PubMed ID: 27572935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hollow core-shell structured Si/C nanocomposites as high-performance anode materials for lithium-ion batteries.
    Tao H; Fan LZ; Song WL; Wu M; He X; Qu X
    Nanoscale; 2014 Mar; 6(6):3138-42. PubMed ID: 24496138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.