These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 38754258)
1. Vision-based motion capture for the gait analysis of neurodegenerative diseases: A review. Vun DSY; Bowers R; McGarry A Gait Posture; 2024 Jul; 112():95-107. PubMed ID: 38754258 [TBL] [Abstract][Full Text] [Related]
2. Accuracy, Validity, and Reliability of Markerless Camera-Based 3D Motion Capture Systems versus Marker-Based 3D Motion Capture Systems in Gait Analysis: A Systematic Review and Meta-Analysis. Scataglini S; Abts E; Van Bocxlaer C; Van den Bussche M; Meletani S; Truijen S Sensors (Basel); 2024 Jun; 24(11):. PubMed ID: 38894476 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous time-frequency analysis of gait signals of both legs in classifying neurodegenerative diseases. Torghabeh FA; Moghadam EA; Hosseini SA Gait Posture; 2024 Sep; 113():443-451. PubMed ID: 39111227 [TBL] [Abstract][Full Text] [Related]
4. Comparing the accuracy of open-source pose estimation methods for measuring gait kinematics. Washabaugh EP; Shanmugam TA; Ranganathan R; Krishnan C Gait Posture; 2022 Sep; 97():188-195. PubMed ID: 35988434 [TBL] [Abstract][Full Text] [Related]
5. Applications and limitations of current markerless motion capture methods for clinical gait biomechanics. Wade L; Needham L; McGuigan P; Bilzon J PeerJ; 2022; 10():e12995. PubMed ID: 35237469 [TBL] [Abstract][Full Text] [Related]
6. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
7. Automating Video-Based Two-Dimensional Motion Analysis in Sport? Implications for Gait Event Detection, Pose Estimation, and Performance Parameter Analysis. Mundt M; Colyer S; Wade L; Needham L; Evans M; Millett E; Alderson J Scand J Med Sci Sports; 2024 Jul; 34(7):e14693. PubMed ID: 38984681 [TBL] [Abstract][Full Text] [Related]
8. Inter-trial variability is higher in 3D markerless compared to marker-based motion capture: Implications for data post-processing and analysis. Horsak B; Prock K; Krondorfer P; Siragy T; Simonlehner M; Dumphart B J Biomech; 2024 Mar; 166():112049. PubMed ID: 38493576 [TBL] [Abstract][Full Text] [Related]
9. Assessment of a novel deep learning-based marker-less motion capture system for gait study. Vafadar S; Skalli W; Bonnet-Lebrun A; Assi A; Gajny L Gait Posture; 2022 May; 94():138-143. PubMed ID: 35306382 [TBL] [Abstract][Full Text] [Related]
10. Gait analysis with the Kinect v2: normative study with healthy individuals and comprehensive study of its sensitivity, validity, and reliability in individuals with stroke. Latorre J; Colomer C; Alcañiz M; Llorens R J Neuroeng Rehabil; 2019 Jul; 16(1):97. PubMed ID: 31349868 [TBL] [Abstract][Full Text] [Related]
11. Concurrent validity of artificial intelligence-based markerless motion capture for over-ground gait analysis: A study of spatiotemporal parameters. Ripic Z; Signorile JF; Kuenze C; Eltoukhy M J Biomech; 2022 Oct; 143():111278. PubMed ID: 36063770 [TBL] [Abstract][Full Text] [Related]
12. Validity of artificial intelligence-based markerless motion capture system for clinical gait analysis: Spatiotemporal results in healthy adults and adults with Parkinson's disease. Ripic Z; Signorile JF; Best TM; Jacobs KA; Nienhuis M; Whitelaw C; Moenning C; Eltoukhy M J Biomech; 2023 Jun; 155():111645. PubMed ID: 37216895 [TBL] [Abstract][Full Text] [Related]
13. Extraction of gait parameters from marker-free video recordings of Timed Up-and-Go tests: Validity, inter- and intra-rater reliability. Åberg AC; Olsson F; Åhman HB; Tarassova O; Arndt A; Giedraitis V; Berglund L; Halvorsen K Gait Posture; 2021 Oct; 90():489-495. PubMed ID: 34628196 [TBL] [Abstract][Full Text] [Related]
14. A low-cost 2-D video system can accurately and reliably assess adaptive gait kinematics in healthy and low vision subjects. Zult T; Allsop J; Tabernero J; Pardhan S Sci Rep; 2019 Dec; 9(1):18385. PubMed ID: 31804559 [TBL] [Abstract][Full Text] [Related]
15. Development of a new low-cost computer vision system for human gait analysis: A case study. Bernal-Torres MG; Medellín-Castillo HI; Arellano-González JC Proc Inst Mech Eng H; 2023 May; 237(5):628-641. PubMed ID: 36950949 [TBL] [Abstract][Full Text] [Related]
16. A Novel Multiple-Cue Observational Clinical Scale for Functional Evaluation of Gait After Stroke - The Stroke Mobility Score (SMS). Raab D; Diószeghy-Léránt B; Wünnemann M; Zumfelde C; Cramer E; Rühlemann A; Wagener J; Gegenbauer S; Geu Flores F; Jäger M; Zietz D; Hefter H; Kecskemethy A; Siebler M Med Sci Monit; 2020 Sep; 26():e923147. PubMed ID: 32930152 [TBL] [Abstract][Full Text] [Related]
17. Validation of wearable inertial sensor-based gait analysis system for measurement of spatiotemporal parameters and lower extremity joint kinematics in sagittal plane. Patel G; Mullerpatan R; Agarwal B; Shetty T; Ojha R; Shaikh-Mohammed J; Sujatha S Proc Inst Mech Eng H; 2022 May; 236(5):686-696. PubMed ID: 35001713 [TBL] [Abstract][Full Text] [Related]
18. A systematic review of the applications of markerless motion capture (MMC) technology for clinical measurement in rehabilitation. Lam WWT; Tang YM; Fong KNK J Neuroeng Rehabil; 2023 May; 20(1):57. PubMed ID: 37131238 [TBL] [Abstract][Full Text] [Related]
19. Assessment of Parkinsonian gait in older adults with dementia via human pose tracking in video data. Sabo A; Mehdizadeh S; Ng KD; Iaboni A; Taati B J Neuroeng Rehabil; 2020 Jul; 17(1):97. PubMed ID: 32664973 [TBL] [Abstract][Full Text] [Related]