BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 3875426)

  • 1. Comparison of murine lymphokine-activated killer cells, natural killer cells, and cytotoxic T lymphocytes.
    Merluzzi VJ
    Cell Immunol; 1985 Oct; 95(1):95-104. PubMed ID: 3875426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lymphokine-activated killer cells in mouse bone marrow chimaeras. The relationship to natural killer cells and to alloreactive cytotoxic T cells.
    Sihvola M
    Scand J Immunol; 1985 Nov; 22(5):479-88. PubMed ID: 2867599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the murine lymphokine-activated killer (LAK) cell phenomenon: dissection of effectors and progenitors into NK- and T-like cells.
    Kalland T; Belfrage H; Bhiladvala P; Hedlund G
    J Immunol; 1987 Jun; 138(11):3640-5. PubMed ID: 3495566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asialo GM1 as an accessory molecule determining the function and reactivity of cytotoxic T lymphocytes.
    Hargrove ME; Ting CC
    Cell Immunol; 1988 Mar; 112(1):123-34. PubMed ID: 2449975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lymphokine-activated killer (LAK) cells. II. Delineation of distinct murine LAK-precursor subpopulations.
    Ballas ZK; Rasmussen W; van Otegham JK
    J Immunol; 1987 Mar; 138(5):1647-52. PubMed ID: 2879870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Murine lymphokine-activated killer (LAK) cells: phenotypic characterization of the precursor and effector cells.
    Yang JC; Mulé JJ; Rosenberg SA
    J Immunol; 1986 Jul; 137(2):715-22. PubMed ID: 2873187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A subpopulation of allospecific cytotoxic T-cell precursors with phenotypic characteristics of natural killer cells.
    Kaplan J; Wasserman K
    Nat Immun Cell Growth Regul; 1985; 4(6):305-14. PubMed ID: 2418351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of rabbit anti-asialo GM1 treatment in vivo or with anti-asialo GM1 plus complement in vitro on cytotoxic T cell activities.
    Stitz L; Baenziger J; Pircher H; Hengartner H; Zinkernagel RM
    J Immunol; 1986 Jun; 136(12):4674-80. PubMed ID: 3486908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow cytometric analysis reveals the presence of asialo GM1 on the surface membrane of alloimmune cytotoxic T lymphocytes.
    Suttles J; Schwarting GA; Stout RD
    J Immunol; 1986 Mar; 136(5):1586-91. PubMed ID: 2936802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential expression of asialo GM1 on alloreactive cytotoxic T lymphocytes and lymphokine-activated killer cells.
    Ting CC; Hargrove ME; Wunderlich J; Loh NN
    Cell Immunol; 1987 Jan; 104(1):115-25. PubMed ID: 2948673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Similarities and distinctions between murine natural killer cells and lymphokine-activated killer cells.
    Merluzzi VJ; Smith MD; Last-Barney K
    Cell Immunol; 1986 Jul; 100(2):563-9. PubMed ID: 3489533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lymphokine-activated killer cells in rats: generation of natural killer cells and lymphokine-activated killer cells from bone marrow progenitor cells.
    Sarneva M; Vujanovic NL; Van den Brink MR; Herberman RB; Hiserodt JC
    Cell Immunol; 1989 Feb; 118(2):448-57. PubMed ID: 2910504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined therapy of mice bearing a lymphokine-activated killer-resistant tumor with recombinant interleukin 2 and an antitumor monoclonal antibody capable of inducing antibody-dependent cellular cytotoxicity.
    Kawase I; Komuta K; Hara H; Inoue T; Hosoe S; Ikeda T; Shirasaka T; Yokota S; Tanio Y; Masuno T
    Cancer Res; 1988 Mar; 48(5):1173-9. PubMed ID: 3257715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of asialo GM1 by both Thy-1-positive and Thy-1-negative lymphocytes: evidence for modification of asialo GM1 by sialic acid.
    Harris MT; Schwarting GA; Stout RD
    Thymus; 1981 Sep; 3(3):169-84. PubMed ID: 6171919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recombinant interleukin 2 allows the differentiation of Thy 1.2+ LAK cells from nude mouse spleen cells.
    Nishimura T; Yagi H; Uchiyama Y; Hashimoto Y
    Immunol Lett; 1986 Mar; 12(2-3):77-82. PubMed ID: 2873098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of asialo GM1 and other antigens and glycolipids on natural killer cells and spleen leukocytes in virus-infected mice.
    Yang H; Yogeeswaran G; Bukowski JF; Welsh RM
    Nat Immun Cell Growth Regul; 1985; 4(1):21-39. PubMed ID: 3875791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A subset of asialo GM1+ cells play a protective role in the occurrence of graft-versus-host disease in mice.
    De Ruysscher D; Sobis H; Vandeputte M; Waer M
    J Immunol; 1991 Jun; 146(12):4065-70. PubMed ID: 1828259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenotypic characterization of murine lymphokine-activated killer cells.
    Owen-Schaub LB; Abraham SR; Hemstreet GP
    Cell Immunol; 1986 Dec; 103(2):272-86. PubMed ID: 2879640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lymphokine-activated killer cells are generated before classical cytotoxic T lymphocytes after bone marrow transplantation in mice.
    Merluzzi VJ; Savage DM; Smith MD; Last-Barney K; Mertelsmann R; Moore MA; Welte K
    J Immunol; 1985 Sep; 135(3):1702-6. PubMed ID: 3894518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential expression of the ASGM1 antigen on anti-reovirus and alloreactive cytotoxic T lymphocytes (CTL).
    Parker SE; Sun YH; Sears DW
    J Immunogenet; 1988 Aug; 15(4):215-26. PubMed ID: 2907994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.