BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 38754365)

  • 1. Reconstructing developmental trajectories using latent dynamical systems and time-resolved transcriptomics.
    Maizels RJ; Snell DM; Briscoe J
    Cell Syst; 2024 May; 15(5):411-424.e9. PubMed ID: 38754365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inferring single-cell transcriptomic dynamics with structured latent gene expression dynamics.
    Farrell S; Mani M; Goyal S
    Cell Rep Methods; 2023 Sep; 3(9):100581. PubMed ID: 37708894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inclusion of temporal information in single cell transcriptomics.
    Olivares-Chauvet P; Junker JP
    Int J Biochem Cell Biol; 2020 May; 122():105745. PubMed ID: 32283227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissecting transition cells from single-cell transcriptome data through multiscale stochastic dynamics.
    Zhou P; Wang S; Li T; Nie Q
    Nat Commun; 2021 Sep; 12(1):5609. PubMed ID: 34556644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of embryonic stem cell differentiation inferred from single-cell transcriptomics show a series of transitions through discrete cell states.
    Jang S; Choubey S; Furchtgott L; Zou LN; Doyle A; Menon V; Loew EB; Krostag AR; Martinez RA; Madisen L; Levi BP; Ramanathan S
    Elife; 2017 Mar; 6():. PubMed ID: 28296635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstructing complex lineage trees from scRNA-seq data using MERLoT.
    Parra RG; Papadopoulos N; Ahumada-Arranz L; Kholtei JE; Mottelson N; Horokhovsky Y; Treutlein B; Soeding J
    Nucleic Acids Res; 2019 Sep; 47(17):8961-8974. PubMed ID: 31428793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deciphering driver regulators of cell fate decisions from single-cell transcriptomics data with CEFCON.
    Wang P; Wen X; Li H; Lang P; Li S; Lei Y; Shu H; Gao L; Zhao D; Zeng J
    Nat Commun; 2023 Dec; 14(1):8459. PubMed ID: 38123534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semisupervised Generative Autoencoder for Single-Cell Data.
    Trong TN; Mehtonen J; González G; Kramer R; Hautamäki V; Heinäniemi M
    J Comput Biol; 2020 Aug; 27(8):1190-1203. PubMed ID: 31794242
    [No Abstract]   [Full Text] [Related]  

  • 9. SPICEMIX enables integrative single-cell spatial modeling of cell identity.
    Chidester B; Zhou T; Alam S; Ma J
    Nat Genet; 2023 Jan; 55(1):78-88. PubMed ID: 36624346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational methods for trajectory inference from single-cell transcriptomics.
    Cannoodt R; Saelens W; Saeys Y
    Eur J Immunol; 2016 Nov; 46(11):2496-2506. PubMed ID: 27682842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining developmental potency and cell lineage trajectories by expression profiling of differentiating mouse embryonic stem cells.
    Aiba K; Nedorezov T; Piao Y; Nishiyama A; Matoba R; Sharova LV; Sharov AA; Yamanaka S; Niwa H; Ko MS
    DNA Res; 2009 Feb; 16(1):73-80. PubMed ID: 19112179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sci-fate characterizes the dynamics of gene expression in single cells.
    Cao J; Zhou W; Steemers F; Trapnell C; Shendure J
    Nat Biotechnol; 2020 Aug; 38(8):980-988. PubMed ID: 32284584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. scBOL: a universal cell type identification framework for single-cell and spatial transcriptomics data.
    Zhai Y; Chen L; Deng M
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38678389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ENTRAIN: integrating trajectory inference and gene regulatory networks with spatial data to co-localize the receptor-ligand interactions that specify cell fate.
    Kyaw W; Chai RC; Khoo WH; Goldstein LD; Croucher PI; Murray JM; Phan TG
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38113422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dynamical systems treatment of transcriptomic trajectories in hematopoiesis.
    Freedman SL; Xu B; Goyal S; Mani M
    Development; 2023 Jun; 150(11):. PubMed ID: 37260149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does mouse embryo primordial germ cell activation start before implantation as suggested by single-cell transcriptomics dynamics?
    Gerovska D; Araúzo-Bravo MJ
    Mol Hum Reprod; 2016 Mar; 22(3):208-25. PubMed ID: 26740066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal modelling using single-cell transcriptomics.
    Ding J; Sharon N; Bar-Joseph Z
    Nat Rev Genet; 2022 Jun; 23(6):355-368. PubMed ID: 35102309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic inference of cell developmental complex energy landscape from time series single-cell transcriptomic data.
    Jiang Q; Zhang S; Wan L
    PLoS Comput Biol; 2022 Jan; 18(1):e1009821. PubMed ID: 35073331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-cell RNA-seq reveals dynamic transcriptome profiling in human early neural differentiation.
    Shang Z; Chen D; Wang Q; Wang S; Deng Q; Wu L; Liu C; Ding X; Wang S; Zhong J; Zhang D; Cai X; Zhu S; Yang H; Liu L; Fink JL; Chen F; Liu X; Gao Z; Xu X
    Gigascience; 2018 Nov; 7(11):. PubMed ID: 30239706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamical Systems Model of RNA Velocity Improves Inference of Single-cell Trajectory, Pseudo-time and Gene Regulation.
    Liu R; Pisco AO; Braun E; Linnarsson S; Zou J
    J Mol Biol; 2022 Aug; 434(15):167606. PubMed ID: 35489382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.