These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38754365)

  • 1. Reconstructing developmental trajectories using latent dynamical systems and time-resolved transcriptomics.
    Maizels RJ; Snell DM; Briscoe J
    Cell Syst; 2024 May; 15(5):411-424.e9. PubMed ID: 38754365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inferring single-cell transcriptomic dynamics with structured latent gene expression dynamics.
    Farrell S; Mani M; Goyal S
    Cell Rep Methods; 2023 Sep; 3(9):100581. PubMed ID: 37708894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inclusion of temporal information in single cell transcriptomics.
    Olivares-Chauvet P; Junker JP
    Int J Biochem Cell Biol; 2020 May; 122():105745. PubMed ID: 32283227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissecting transition cells from single-cell transcriptome data through multiscale stochastic dynamics.
    Zhou P; Wang S; Li T; Nie Q
    Nat Commun; 2021 Sep; 12(1):5609. PubMed ID: 34556644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of embryonic stem cell differentiation inferred from single-cell transcriptomics show a series of transitions through discrete cell states.
    Jang S; Choubey S; Furchtgott L; Zou LN; Doyle A; Menon V; Loew EB; Krostag AR; Martinez RA; Madisen L; Levi BP; Ramanathan S
    Elife; 2017 Mar; 6():. PubMed ID: 28296635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstructing complex lineage trees from scRNA-seq data using MERLoT.
    Parra RG; Papadopoulos N; Ahumada-Arranz L; Kholtei JE; Mottelson N; Horokhovsky Y; Treutlein B; Soeding J
    Nucleic Acids Res; 2019 Sep; 47(17):8961-8974. PubMed ID: 31428793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deciphering driver regulators of cell fate decisions from single-cell transcriptomics data with CEFCON.
    Wang P; Wen X; Li H; Lang P; Li S; Lei Y; Shu H; Gao L; Zhao D; Zeng J
    Nat Commun; 2023 Dec; 14(1):8459. PubMed ID: 38123534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semisupervised Generative Autoencoder for Single-Cell Data.
    Trong TN; Mehtonen J; González G; Kramer R; Hautamäki V; Heinäniemi M
    J Comput Biol; 2020 Aug; 27(8):1190-1203. PubMed ID: 31794242
    [No Abstract]   [Full Text] [Related]  

  • 9. A variational autoencoder trained with priors from canonical pathways increases the interpretability of transcriptome data.
    Liu B; Rosenhahn B; Illig T; DeLuca DS
    PLoS Comput Biol; 2024 Jul; 20(7):e1011198. PubMed ID: 38959284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SPICEMIX enables integrative single-cell spatial modeling of cell identity.
    Chidester B; Zhou T; Alam S; Ma J
    Nat Genet; 2023 Jan; 55(1):78-88. PubMed ID: 36624346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational methods for trajectory inference from single-cell transcriptomics.
    Cannoodt R; Saelens W; Saeys Y
    Eur J Immunol; 2016 Nov; 46(11):2496-2506. PubMed ID: 27682842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defining developmental potency and cell lineage trajectories by expression profiling of differentiating mouse embryonic stem cells.
    Aiba K; Nedorezov T; Piao Y; Nishiyama A; Matoba R; Sharova LV; Sharov AA; Yamanaka S; Niwa H; Ko MS
    DNA Res; 2009 Feb; 16(1):73-80. PubMed ID: 19112179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Joint trajectory inference for single-cell genomics using deep learning with a mixture prior.
    Du JH; Chen T; Gao M; Wang J
    Proc Natl Acad Sci U S A; 2024 Sep; 121(37):e2316256121. PubMed ID: 39226366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sci-fate characterizes the dynamics of gene expression in single cells.
    Cao J; Zhou W; Steemers F; Trapnell C; Shendure J
    Nat Biotechnol; 2020 Aug; 38(8):980-988. PubMed ID: 32284584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncovering underlying physical principles and driving forces of cell differentiation and reprogramming from single-cell transcriptomics.
    Zhu L; Yang S; Zhang K; Wang H; Fang X; Wang J
    Proc Natl Acad Sci U S A; 2024 Aug; 121(34):e2401540121. PubMed ID: 39150785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. scBOL: a universal cell type identification framework for single-cell and spatial transcriptomics data.
    Zhai Y; Chen L; Deng M
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38678389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ENTRAIN: integrating trajectory inference and gene regulatory networks with spatial data to co-localize the receptor-ligand interactions that specify cell fate.
    Kyaw W; Chai RC; Khoo WH; Goldstein LD; Croucher PI; Murray JM; Phan TG
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38113422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dynamical systems treatment of transcriptomic trajectories in hematopoiesis.
    Freedman SL; Xu B; Goyal S; Mani M
    Development; 2023 Jun; 150(11):. PubMed ID: 37260149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does mouse embryo primordial germ cell activation start before implantation as suggested by single-cell transcriptomics dynamics?
    Gerovska D; Araúzo-Bravo MJ
    Mol Hum Reprod; 2016 Mar; 22(3):208-25. PubMed ID: 26740066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal modelling using single-cell transcriptomics.
    Ding J; Sharon N; Bar-Joseph Z
    Nat Rev Genet; 2022 Jun; 23(6):355-368. PubMed ID: 35102309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.