These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 38754415)

  • 41. Tangential migration of glutamatergic neurons and cortical patterning during development: Lessons from Cajal-Retzius cells.
    Barber M; Pierani A
    Dev Neurobiol; 2016 Aug; 76(8):847-81. PubMed ID: 26581033
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cajal and Lorente de Nó on cortical interneurons: coincidences and progress.
    Fairén A
    Brain Res Rev; 2007 Oct; 55(2):430-44. PubMed ID: 17659782
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Historical first descriptions of Cajal-Retzius cells: from pioneer studies to current knowledge.
    Gil V; Nocentini S; Del Río JA
    Front Neuroanat; 2014; 8():32. PubMed ID: 24904301
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development and Arealization of the Cerebral Cortex.
    Cadwell CR; Bhaduri A; Mostajo-Radji MA; Keefe MG; Nowakowski TJ
    Neuron; 2019 Sep; 103(6):980-1004. PubMed ID: 31557462
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transformation of the Radial Glia Scaffold Demarcates Two Stages of Human Cerebral Cortex Development.
    Nowakowski TJ; Pollen AA; Sandoval-Espinosa C; Kriegstein AR
    Neuron; 2016 Sep; 91(6):1219-1227. PubMed ID: 27657449
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Radial glia and somal translocation of radial neurons in the developing cerebral cortex.
    Nadarajah B
    Glia; 2003 Jul; 43(1):33-36. PubMed ID: 12761863
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cholinergic influences on cortical development and adult neurogenesis.
    Bruel-Jungerman E; Lucassen PJ; Francis F
    Behav Brain Res; 2011 Aug; 221(2):379-88. PubMed ID: 21272598
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cerebral cortical progenitors are fated to produce region-specific neuronal populations.
    Ferri RT; Levitt P
    Cereb Cortex; 1993; 3(3):187-98. PubMed ID: 8324369
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulatory mechanisms of cortical laminar development.
    Casanova MF; Trippe J
    Brain Res Rev; 2006 Jun; 51(1):72-84. PubMed ID: 16359732
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Glutamate-like immunoreactivity and fate of Cajal-Retzius cells in the murine cortex as identified with calretinin antibody.
    del Río JA; Martínez A; Fonseca M; Auladell C; Soriano E
    Cereb Cortex; 1995; 5(1):13-21. PubMed ID: 7719127
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cortical interneuron specification and diversification in the era of big data.
    Kessaris N; Denaxa M
    Curr Opin Neurobiol; 2023 Jun; 80():102703. PubMed ID: 36933450
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Intrinsic and extrinsic control of cortical development.
    Rubenstein JL
    Novartis Found Symp; 2000; 228():67-75; discussion 75-82, 109-13. PubMed ID: 10929317
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nuclear factor one B regulates neural stem cell differentiation and axonal projection of corticofugal neurons.
    Betancourt J; Katzman S; Chen B
    J Comp Neurol; 2014 Jan; 522(1):6-35. PubMed ID: 23749646
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Appearance of putative amino acid neurotransmitters during differentiation of neurons in embryonic turtle cerebral cortex.
    Blanton MG; Kriegstein AR
    J Comp Neurol; 1991 Aug; 310(4):571-92. PubMed ID: 1682348
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cerebral cortical neuron diversity and development at single-cell resolution.
    Johnson MB; Walsh CA
    Curr Opin Neurobiol; 2017 Feb; 42():9-16. PubMed ID: 27888678
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neurogenesis and the evolution of cortical diversity: mode, tempo, and partitioning during development and persistence in adulthood.
    Kornack DR
    Brain Behav Evol; 2000 Jun; 55(6):336-44. PubMed ID: 10971018
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The maturation of cortical interneuron diversity: how multiple developmental journeys shape the emergence of proper network function.
    Cossart R
    Curr Opin Neurobiol; 2011 Feb; 21(1):160-8. PubMed ID: 21074988
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The methyl binding domain 3/nucleosome remodelling and deacetylase complex regulates neural cell fate determination and terminal differentiation in the cerebral cortex.
    Knock E; Pereira J; Lombard PD; Dimond A; Leaford D; Livesey FJ; Hendrich B
    Neural Dev; 2015 May; 10():13. PubMed ID: 25934499
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The surface of the developing cerebral cortex: still special cells one century later.
    Fairén A; Morante-Oria J; Frassoni C
    Prog Brain Res; 2002; 136():281-91. PubMed ID: 12143388
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular mechanisms of cortical differentiation.
    Guillemot F; Molnár Z; Tarabykin V; Stoykova A
    Eur J Neurosci; 2006 Feb; 23(4):857-68. PubMed ID: 16519651
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.