These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 38754496)
1. Potential benefits of cropping pattern change in the climate-sensitive regions of rice production in China. Guo E; Li T; Zhang Z; Guo S; Liu Z; Zhao J; Zhao C; Fan S; Shi Y; Guan K; Yang C; Yang X Sci Total Environ; 2024 Jul; 934():173281. PubMed ID: 38754496 [TBL] [Abstract][Full Text] [Related]
2. Greenhouse gas mitigation potential of balanced fertilization cropland under double-cropping systems: a case study in Shaanxi province, China. Li C; Li C; Han J; Zhang J; Wang Y; Yang F; Wen X; Liao Y Environ Monit Assess; 2019 Jan; 191(2):90. PubMed ID: 30666420 [TBL] [Abstract][Full Text] [Related]
3. Climate-adaptive crop distribution can feed food demand, improve water scarcity, and reduce greenhouse gas emissions. Su Z; Zhao J; Zhuang M; Liu Z; Zhao C; Pullens JWM; Liu K; Harrison MT; Yang X Sci Total Environ; 2024 Sep; 944():173819. PubMed ID: 38857807 [TBL] [Abstract][Full Text] [Related]
4. [Field greenhouse gas emission characteristics and carbon footprint of ratoon rice]. Lin ZM; Li Z; Weng PY; Wu DQ; Zou JN; Pang ZQ; Lin WX Ying Yong Sheng Tai Xue Bao; 2022 May; 33(5):1340-1351. PubMed ID: 35730093 [TBL] [Abstract][Full Text] [Related]
5. Increased greenhouse gas emissions intensity of major croplands in China: Implications for food security and climate change mitigation. Zhang J; Tian H; Shi H; Zhang J; Wang X; Pan S; Yang J Glob Chang Biol; 2020 Nov; 26(11):6116-6133. PubMed ID: 32697859 [TBL] [Abstract][Full Text] [Related]
6. Carbon budget of diversified cropping systems in southwestern China: Revealing key crop categories and influencing factors under different classifications. Li H; Xu Y; Gao W; Cui J; Chen Y Environ Res; 2024 Aug; 255():119189. PubMed ID: 38777293 [TBL] [Abstract][Full Text] [Related]
7. Exploiting Co-Benefits of Increased Rice Production and Reduced Greenhouse Gas Emission through Optimized Crop and Soil Management. An N; Fan M; Zhang F; Christie P; Yang J; Huang J; Guo S; Shi X; Tang Q; Peng J; Zhong X; Sun Y; Lv S; Jiang R; Dobermann A PLoS One; 2015; 10(10):e0140023. PubMed ID: 26452155 [TBL] [Abstract][Full Text] [Related]
8. Adaptation measures of the potential double cropping region in Northern China to future climate change. Guan K; Li T; Yang F; Guo E; Zhang W; Shi Y; Yang X Sci Total Environ; 2024 Jun; 927():172203. PubMed ID: 38580126 [TBL] [Abstract][Full Text] [Related]
9. Reducing carbon footprints and increasing net ecosystem economic benefits through dense planting with less nitrogen in double-cropping rice systems. Zhou W; Long W; Wang H; Long P; Xu Y; Zhong K; Xiong R; Xie F; Chen F; Fu Z Sci Total Environ; 2023 Sep; 891():164756. PubMed ID: 37295517 [TBL] [Abstract][Full Text] [Related]
10. Difference in carbon footprint between single- and double-cropping rice production in China, 2003-2016. Zhang L; Xu X Environ Sci Pollut Res Int; 2021 Jun; 28(21):27308-27317. PubMed ID: 33506424 [TBL] [Abstract][Full Text] [Related]
11. China's greenhouse gas emissions for cropping systems from 1978-2016. Liang D; Lu X; Zhuang M; Shi G; Hu C; Wang S; Hao J Sci Data; 2021 Jul; 8(1):171. PubMed ID: 34257314 [TBL] [Abstract][Full Text] [Related]
12. Producing more grain yield of rice with less ammonia volatilization and greenhouse gases emission using slow/controlled-release urea. Guo C; Ren T; Li P; Wang B; Zou J; Hussain S; Cong R; Wu L; Lu J; Li X Environ Sci Pollut Res Int; 2019 Jan; 26(3):2569-2579. PubMed ID: 30474811 [TBL] [Abstract][Full Text] [Related]
13. Effects of warming on rice production and metabolism process associated with greenhouse gas emissions. Shen Y; Zhang C; Peng Y; Ran X; Liu K; Shi W; Wu W; Zhao Y; Liu W; Ding Y; Tang S Sci Total Environ; 2024 May; 926():172133. PubMed ID: 38569960 [TBL] [Abstract][Full Text] [Related]
14. [Temporal and Spatial Distribution, Utilization Status, and Carbon Emission Reduction Potential of Straw Resources in China]. Yang CW; Xing F; Zhu JC; Li RH; Zhang ZQ Huan Jing Ke Xue; 2023 Feb; 44(2):1149-1162. PubMed ID: 36775637 [TBL] [Abstract][Full Text] [Related]
15. [Characteristics of seasonal drought and its adaptation in southern China under the background of global climate change. VI. Optimized layout of cropping system for preventing and avoiding drought disaster]. Sui Y; Huang WH; Yang XG; Li MS Ying Yong Sheng Tai Xue Bao; 2013 Nov; 24(11):3192-8. PubMed ID: 24564149 [TBL] [Abstract][Full Text] [Related]
16. [Estimations of application dosage and greenhouse gas emission of chemical pesticides in staple crops in China.]. Zhang G; Lu F; Huang ZG; Chen S; Wang XK Ying Yong Sheng Tai Xue Bao; 2016 Sep; 27(9):2875-2883. PubMed ID: 29732850 [TBL] [Abstract][Full Text] [Related]
17. Cover crops mitigate direct greenhouse gases balance but reduce drainage under climate change scenarios in temperate climate with dry summers. Tribouillois H; Constantin J; Justes E Glob Chang Biol; 2018 Jun; 24(6):2513-2529. PubMed ID: 29443447 [TBL] [Abstract][Full Text] [Related]
18. Toward Low-Carbon Rice Production in China: Historical Changes, Driving Factors, and Mitigation Potential. Li S; Lu H; Li X; Shao Y; Tang Y; Chen G; Chen Z; Zhu Z; Zhu J; Tang L; Liang J Environ Sci Technol; 2024 Apr; 58(13):5772-5783. PubMed ID: 38502924 [TBL] [Abstract][Full Text] [Related]
19. Sustainable intensification of rice fallows of Eastern India with suitable winter crop and appropriate crop establishment technique. Kumar R; Mishra JS; Rao KK; Bhatt BP; Hazra KK; Hans H; Mondal S Environ Sci Pollut Res Int; 2019 Oct; 26(28):29409-29423. PubMed ID: 31401802 [TBL] [Abstract][Full Text] [Related]
20. Effects of straw returning levels on carbon footprint and net ecosystem economic benefits from rice-wheat rotation in central China. Li SH; Guo LJ; Cao CG; Li CF Environ Sci Pollut Res Int; 2021 Feb; 28(5):5742-5754. PubMed ID: 32974819 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]