BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 38754573)

  • 1. Swim training induces distinct osseous gene expression patterns in anosteocytic and osteocytic teleost fish.
    Tauer JT; Thiele T; Julien C; Ofer L; Zaslansky P; Shahar R; Willie BM
    Bone; 2024 Aug; 185():117125. PubMed ID: 38754573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New insights into the process of osteogenesis of anosteocytic bone.
    Ofer L; Dumont M; Rack A; Zaslansky P; Shahar R
    Bone; 2019 Aug; 125():61-73. PubMed ID: 31085351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the biology of fish bone. III. Ultrastructure of osteogenesis and resorption in osteocytic (cellular) and anosteocytic (acellular) bones.
    Weiss RE; Watabe N
    Calcif Tissue Int; 1979 Aug; 28(1):43-56. PubMed ID: 115551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of the structure, composition and mechanical properties of anosteocytic vertebrae of medaka (O. latipes) and osteocytic vertebrae of zebrafish (D. rerio).
    Ofer L; Zaslansky P; Shahar R
    J Fish Biol; 2021 Apr; 98(4):995-1006. PubMed ID: 32239680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel nonosteocytic regulatory mechanism of bone modeling.
    Ofer L; Dean MN; Zaslansky P; Kult S; Shwartz Y; Zaretsky J; Griess-Fishheimer S; Monsonego-Ornan E; Zelzer E; Shahar R
    PLoS Biol; 2019 Feb; 17(2):e3000140. PubMed ID: 30707688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The phylogenetic origin and evolution of acellular bone in teleost fishes: insights into osteocyte function in bone metabolism.
    Davesne D; Meunier FJ; Schmitt AD; Friedman M; Otero O; Benson RBJ
    Biol Rev Camb Philos Soc; 2019 Aug; 94(4):1338-1363. PubMed ID: 30924235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The response of anosteocytic bone to controlled loading.
    Atkins A; Milgram J; Weiner S; Shahar R
    J Exp Biol; 2015 Nov; 218(Pt 22):3559-69. PubMed ID: 26582932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The osteocyte and its osteoclastogenic potential.
    Marahleh A; Kitaura H; Ohori F; Noguchi T; Mizoguchi I
    Front Endocrinol (Lausanne); 2023; 14():1121727. PubMed ID: 37293482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteocytic network is more responsive in calcium signaling than osteoblastic network under fluid flow.
    Lu XL; Huo B; Chiang V; Guo XE
    J Bone Miner Res; 2012 Mar; 27(3):563-74. PubMed ID: 22113822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The three-dimensional structure of anosteocytic lamellated bone of fish.
    Atkins A; Reznikov N; Ofer L; Masic A; Weiner S; Shahar R
    Acta Biomater; 2015 Feb; 13():311-23. PubMed ID: 25449924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. E11/gp38 selective expression in osteocytes: regulation by mechanical strain and role in dendrite elongation.
    Zhang K; Barragan-Adjemian C; Ye L; Kotha S; Dallas M; Lu Y; Zhao S; Harris M; Harris SE; Feng JQ; Bonewald LF
    Mol Cell Biol; 2006 Jun; 26(12):4539-52. PubMed ID: 16738320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dysregulated gene expression in the primary osteoblasts and osteocytes isolated from hypophosphatemic Hyp mice.
    Miyagawa K; Yamazaki M; Kawai M; Nishino J; Koshimizu T; Ohata Y; Tachikawa K; Mikuni-Takagaki Y; Kogo M; Ozono K; Michigami T
    PLoS One; 2014; 9(4):e93840. PubMed ID: 24710520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A crucial role for matrix metalloproteinase 2 in osteocytic canalicular formation and bone metabolism.
    Inoue K; Mikuni-Takagaki Y; Oikawa K; Itoh T; Inada M; Noguchi T; Park JS; Onodera T; Krane SM; Noda M; Itohara S
    J Biol Chem; 2006 Nov; 281(44):33814-24. PubMed ID: 16959767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remodeling in bone without osteocytes: billfish challenge bone structure-function paradigms.
    Atkins A; Dean MN; Habegger ML; Motta PJ; Ofer L; Repp F; Shipov A; Weiner S; Currey JD; Shahar R
    Proc Natl Acad Sci U S A; 2014 Nov; 111(45):16047-52. PubMed ID: 25331870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteocyte network; a negative regulatory system for bone mass augmented by the induction of Rankl in osteoblasts and Sost in osteocytes at unloading.
    Moriishi T; Fukuyama R; Ito M; Miyazaki T; Maeno T; Kawai Y; Komori H; Komori T
    PLoS One; 2012; 7(6):e40143. PubMed ID: 22768243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sustained swimming increases the mineral content and osteocyte density of salmon vertebral bone.
    Totland GK; Fjelldal PG; Kryvi H; Løkka G; Wargelius A; Sagstad A; Hansen T; Grotmol S
    J Anat; 2011 Oct; 219(4):490-501. PubMed ID: 21615400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revisiting the links between bone remodelling and osteocytes: insights from across phyla.
    Currey JD; Dean MN; Shahar R
    Biol Rev Camb Philos Soc; 2017 Aug; 92(3):1702-1719. PubMed ID: 27862887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Osteocytic osteolysis : measurements of the volume of osteocytic lacunae].
    Matsuo K; Nango N
    Clin Calcium; 2012 May; 22(5):677-83. PubMed ID: 22549192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteocytic signalling pathways as therapeutic targets for bone fragility.
    Plotkin LI; Bellido T
    Nat Rev Endocrinol; 2016 Oct; 12(10):593-605. PubMed ID: 27230951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche.
    Birmingham E; Niebur GL; McHugh PE; Shaw G; Barry FP; McNamara LM
    Eur Cell Mater; 2012 Jan; 23():13-27. PubMed ID: 22241610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.