These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38754869)

  • 81. Fixed effects analysis of repeated measures data.
    Gunasekara FI; Richardson K; Carter K; Blakely T
    Int J Epidemiol; 2014 Feb; 43(1):264-9. PubMed ID: 24366487
    [TBL] [Abstract][Full Text] [Related]  

  • 82. "A Bayesian sensitivity analysis to evaluate the impact of unmeasured confounding with external data: a real world comparative effectiveness study in osteoporosis".
    Zhang X; Faries DE; Boytsov N; Stamey JD; Seaman JW
    Pharmacoepidemiol Drug Saf; 2016 Sep; 25(9):982-92. PubMed ID: 27396534
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Adjustment for time-dependent unmeasured confounders in marginal structural Cox models using validation sample data.
    Burne RM; Abrahamowicz M
    Stat Methods Med Res; 2019 Feb; 28(2):357-371. PubMed ID: 28835193
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Simultaneous adjustment of uncontrolled confounding, selection bias and misclassification in multiple-bias modelling.
    Brendel P; Torres A; Arah OA
    Int J Epidemiol; 2023 Aug; 52(4):1220-1230. PubMed ID: 36718093
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Evaluation of Confounding and Selection Bias in Epidemiological Studies of Populations Exposed to Low-Dose, High-Energy Photon Radiation.
    Schubauer-Berigan MK; Berrington de Gonzalez A; Cardis E; Laurier D; Lubin JH; Hauptmann M; Richardson DB
    J Natl Cancer Inst Monogr; 2020 Jul; 2020(56):133-153. PubMed ID: 32657349
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Confounding, causality, and confusion: the role of intermediate variables in interpreting observational studies in obstetrics.
    Ananth CV; Schisterman EF
    Am J Obstet Gynecol; 2017 Aug; 217(2):167-175. PubMed ID: 28427805
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Bias factor, maximum bias and the E-value: insight and extended applications.
    Cusson A; Infante-Rivard C
    Int J Epidemiol; 2020 Oct; 49(5):1509-1516. PubMed ID: 32995847
    [TBL] [Abstract][Full Text] [Related]  

  • 88. To Adjust or Not to Adjust? When a "Confounder" Is Only Measured After Exposure.
    Groenwold RHH; Palmer TM; Tilling K
    Epidemiology; 2021 Mar; 32(2):194-201. PubMed ID: 33470711
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Bias in occupational epidemiology studies.
    Pearce N; Checkoway H; Kriebel D
    Occup Environ Med; 2007 Aug; 64(8):562-8. PubMed ID: 17053019
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Environmental confounding in gene-environment interaction studies.
    Vanderweele TJ; Ko YA; Mukherjee B
    Am J Epidemiol; 2013 Jul; 178(1):144-52. PubMed ID: 23821317
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Monte Carlo sensitivity analysis for unmeasured confounding in dynamic treatment regimes.
    Rose EJ; Moodie EEM; Shortreed SM
    Biom J; 2023 Jun; 65(5):e2100359. PubMed ID: 37017498
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Bias due to non-differential misclassification of polytomous confounders.
    Brenner H
    J Clin Epidemiol; 1993 Jan; 46(1):57-63. PubMed ID: 8433115
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Bias formulas for external adjustment and sensitivity analysis of unmeasured confounders.
    Arah OA; Chiba Y; Greenland S
    Ann Epidemiol; 2008 Aug; 18(8):637-46. PubMed ID: 18652982
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Monte Carlo sensitivity analysis and Bayesian analysis of smoking as an unmeasured confounder in a study of silica and lung cancer.
    Steenland K; Greenland S
    Am J Epidemiol; 2004 Aug; 160(4):384-92. PubMed ID: 15286024
    [TBL] [Abstract][Full Text] [Related]  

  • 95. #Bias: The Opportunities and Challenges of Surveys That Recruit and Collect Data of Autistic Adults Online.
    Rubenstein E; Furnier S
    Autism Adulthood; 2021 Jun; 3(2):120-128. PubMed ID: 34169230
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Two-stage instrumental variable methods for estimating the causal odds ratio: analysis of bias.
    Cai B; Small DS; Have TR
    Stat Med; 2011 Jul; 30(15):1809-24. PubMed ID: 21495062
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Awareness of and potential for dependent error in the observational epidemiologic literature: A review.
    Ranker LR; Petersen JM; Fox MP
    Ann Epidemiol; 2019 Aug; 36():15-19.e2. PubMed ID: 31402082
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Implications of M bias in epidemiologic studies: a simulation study.
    Liu W; Brookhart MA; Schneeweiss S; Mi X; Setoguchi S
    Am J Epidemiol; 2012 Nov; 176(10):938-48. PubMed ID: 23100247
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Simulation as a Tool for Teaching and Learning Epidemiologic Methods.
    Rudolph JE; Fox MP; Naimi AI
    Am J Epidemiol; 2021 May; 190(5):900-907. PubMed ID: 33083814
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Using Sensitivity Analyses for Unobserved Confounding to Address Covariate Measurement Error in Propensity Score Methods.
    Rudolph KE; Stuart EA
    Am J Epidemiol; 2018 Mar; 187(3):604-613. PubMed ID: 28992211
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.