These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 38755251)

  • 1. Sustained attention operates via dissociable neural mechanisms across different eccentric locations.
    Phangwiwat T; Phunchongharn P; Wongsawat Y; Chatnuntawech I; Wang S; Chunharas C; Sprague TC; Woodman GF; Itthipuripat S
    Sci Rep; 2024 May; 14(1):11188. PubMed ID: 38755251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sustained attention operates via dissociable neural mechanisms across different eccentric locations.
    Phangwiwat T; Punchongham P; Wongsawat Y; Chatnuntawech I; Wang S; Chunharas C; Sprague T; Woodman GF; Itthipuripat S
    Res Sq; 2023 Nov; ():. PubMed ID: 37986807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Covert enaction at work: Recording the continuous movements of visuospatial attention to visible or imagined targets by means of Steady-State Visual Evoked Potentials (SSVEPs).
    Gregori Grgič R; Calore E; de'Sperati C
    Cortex; 2016 Jan; 74():31-52. PubMed ID: 26615517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attentional facilitation throughout human visual cortex lingers in retinotopic coordinates after eye movements.
    Golomb JD; Nguyen-Phuc AY; Mazer JA; McCarthy G; Chun MM
    J Neurosci; 2010 Aug; 30(31):10493-506. PubMed ID: 20685992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional MRI and EEG Index Complementary Attentional Modulations.
    Itthipuripat S; Sprague TC; Serences JT
    J Neurosci; 2019 Jul; 39(31):6162-6179. PubMed ID: 31127004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microsaccade-related brain potentials signal the focus of visuospatial attention.
    Meyberg S; Werkle-Bergner M; Sommer W; Dimigen O
    Neuroimage; 2015 Jan; 104():79-88. PubMed ID: 25285375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial Attentional Selection Modulates Early Visual Stimulus Processing Independently of Visual Alpha Modulations.
    Gundlach C; Moratti S; Forschack N; Müller MM
    Cereb Cortex; 2020 May; 30(6):3686-3703. PubMed ID: 31907512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competitive interactions of attentional resources in early visual cortex during sustained visuospatial attention within or between visual hemifields: evidence for the different-hemifield advantage.
    Walter S; Quigley C; Mueller MM
    J Cogn Neurosci; 2014 May; 26(5):938-54. PubMed ID: 24345166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attentional Selection of Feature Conjunctions Is Accomplished by Parallel and Independent Selection of Single Features.
    Andersen SK; Müller MM; Hillyard SA
    J Neurosci; 2015 Jul; 35(27):9912-9. PubMed ID: 26156992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perceptual Difficulty Regulates Attentional Gain Modulations in Human Visual Cortex.
    Sawetsuttipan P; Phunchongharn P; Ounjai K; Salazar A; Pongsuwan S; Intrachooto S; Serences JT; Itthipuripat S
    J Neurosci; 2023 May; 43(18):3312-3330. PubMed ID: 36963848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing Neural Correlates of Memory Encoding and Maintenance for Foveal and Peripheral Stimuli.
    Kandemir G; Olivers C
    J Cogn Neurosci; 2024 Sep; 36(9):1807-1826. PubMed ID: 38940724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two different mechanisms support selective attention at different phases of training.
    Itthipuripat S; Cha K; Byers A; Serences JT
    PLoS Biol; 2017 Jun; 15(6):e2001724. PubMed ID: 28654635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active vision at the foveal scale in the primate superior colliculus.
    Hafed ZM; Chen CY; Tian X; Baumann MP; Zhang T
    J Neurophysiol; 2021 Apr; 125(4):1121-1138. PubMed ID: 33534661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating the feasibility of the steady-state visual evoked potential (SSVEP) to study temporal attention.
    Mora-Cortes A; Ridderinkhof KR; Cohen MX
    Psychophysiology; 2018 May; 55(5):e13029. PubMed ID: 29119621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steady-state visual evoked potentials reveal enhanced neural responses to illusory surfaces during a concurrent visual attention task.
    Wittenhagen L; Mattingley JB
    Cortex; 2019 Aug; 117():217-227. PubMed ID: 30999213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attention is allocated closely ahead of the target during smooth pursuit eye movements: Evidence from EEG frequency tagging.
    Chen J; Valsecchi M; Gegenfurtner KR
    Neuropsychologia; 2017 Jul; 102():206-216. PubMed ID: 28647438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A temporal dependency account of attentional inhibition in oculomotor control.
    Weaver MD; van Zoest W; Hickey C
    Neuroimage; 2017 Feb; 147():880-894. PubMed ID: 27836709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the temporal dynamics of inhibition of return using steady-state visual evoked potentials.
    Lim A; Janssen SMJ; Satel J
    Cogn Affect Behav Neurosci; 2020 Dec; 20(6):1349-1364. PubMed ID: 33236297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anticipatory and stimulus-evoked blood oxygenation level-dependent modulations related to spatial attention reflect a common additive signal.
    Sylvester CM; Shulman GL; Jack AI; Corbetta M
    J Neurosci; 2009 Aug; 29(34):10671-82. PubMed ID: 19710319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feature-Selective Attentional Modulations in Human Frontoparietal Cortex.
    Ester EF; Sutterer DW; Serences JT; Awh E
    J Neurosci; 2016 Aug; 36(31):8188-99. PubMed ID: 27488638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.