These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 38755251)

  • 21. Using frequency tagging to quantify attentional deployment in a visual divided attention task.
    Toffanin P; de Jong R; Johnson A; Martens S
    Int J Psychophysiol; 2009 Jun; 72(3):289-98. PubMed ID: 19452603
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neural responses to target features outside a search array are enhanced during conjunction but not unique-feature search.
    Painter DR; Dux PE; Travis SL; Mattingley JB
    J Neurosci; 2014 Feb; 34(9):3390-401. PubMed ID: 24573295
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bottom-Up and Top-Down Factors Differentially Influence Stimulus Representations Across Large-Scale Attentional Networks.
    Long NM; Kuhl BA
    J Neurosci; 2018 Mar; 38(10):2495-2504. PubMed ID: 29437930
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Time courses of attentional modulation in neural amplification and synchronization measured with steady-state visual-evoked potentials.
    Kashiwase Y; Matsumiya K; Kuriki I; Shioiri S
    J Cogn Neurosci; 2012 Aug; 24(8):1779-93. PubMed ID: 22360591
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Covert Spatial Attention Speeds Target Individuation.
    Foster JJ; Bsales EM; Awh E
    J Neurosci; 2020 Mar; 40(13):2717-2726. PubMed ID: 32054678
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A category-specific top-down attentional set can affect the neural responses outside the current focus of attention.
    Jiang Y; Wu X; Gao X
    Neurosci Lett; 2017 Oct; 659():80-85. PubMed ID: 28735084
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dissociable Neural Mechanisms Underlie the Effects of Attention on Visual Appearance and Response Bias.
    Itthipuripat S; Phangwiwat T; Wiwatphonthana P; Sawetsuttipan P; Chang KY; Störmer VS; Woodman GF; Serences JT
    J Neurosci; 2023 Sep; 43(39):6628-6652. PubMed ID: 37620156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Attentional modulation of neural responses to illusory shapes: Evidence from steady-state and evoked visual potentials.
    Wittenhagen L; Mattingley JB
    Neuropsychologia; 2019 Mar; 125():70-80. PubMed ID: 30711611
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of overt and covert attention on the steady-state visual evoked potential.
    Walter S; Quigley C; Andersen SK; Mueller MM
    Neurosci Lett; 2012 Jun; 519(1):37-41. PubMed ID: 22579858
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulations of foveal vision associated with microsaccade preparation.
    Shelchkova N; Poletti M
    Proc Natl Acad Sci U S A; 2020 May; 117(20):11178-11183. PubMed ID: 32358186
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Early spatial attentional modulation of inputs to the fovea.
    Frey HP; Kelly SP; Lalor EC; Foxe JJ
    J Neurosci; 2010 Mar; 30(13):4547-51. PubMed ID: 20357105
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Attention and sensory gain control: a peripheral visual process?
    Handy TC; Khoe W
    J Cogn Neurosci; 2005 Dec; 17(12):1936-49. PubMed ID: 16356330
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Slow biasing of processing resources in early visual cortex is preceded by emotional cue extraction in emotion-attention competition.
    Schönwald LI; Müller MM
    Hum Brain Mapp; 2014 Apr; 35(4):1477-90. PubMed ID: 23450516
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulation of the attentional span by foveal and parafoveal task load: An ERP study using attentional probes.
    Kornrumpf B; Sommer W
    Psychophysiology; 2015 Sep; 52(9):1218-27. PubMed ID: 25990658
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of EEG-vigilance regulation patterns on early perceptual processes in human visual cortex.
    Bekhtereva V; Sander C; Forschack N; Olbrich S; Hegerl U; Müller MM
    Clin Neurophysiol; 2014 Jan; 125(1):98-107. PubMed ID: 23871178
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overlapping neural circuits for visual attention and eye movements in the human cerebellum.
    Striemer CL; Chouinard PA; Goodale MA; de Ribaupierre S
    Neuropsychologia; 2015 Mar; 69():9-21. PubMed ID: 25613405
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visual Short-Term Memory Activity in Parietal Lobe Reflects Cognitive Processes beyond Attentional Selection.
    Sheremata SL; Somers DC; Shomstein S
    J Neurosci; 2018 Feb; 38(6):1511-1519. PubMed ID: 29311140
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sustained visuospatial attention enhances lateralized anticipatory ERP activity in sensory areas.
    Di Russo F; Berchicci M; Bianco V; Mussini E; Perri RL; Pitzalis S; Quinzi F; Tranquilli S; Spinelli D
    Brain Struct Funct; 2021 Mar; 226(2):457-470. PubMed ID: 33392666
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploring the temporal dynamics of sustained and transient spatial attention using steady-state visual evoked potentials.
    Zhang D; Hong B; Gao S; Röder B
    Exp Brain Res; 2017 May; 235(5):1575-1591. PubMed ID: 28258437
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Does spatial attention modulate the earliest component of the visual evoked potential?
    Baumgartner HM; Graulty CJ; Hillyard SA; Pitts MA
    Cogn Neurosci; 2018; 9(1-2):4-19. PubMed ID: 28534668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.