BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 38755322)

  • 1. Spatial transition tensor of single cells.
    Zhou P; Bocci F; Li T; Nie Q
    Nat Methods; 2024 Jun; 21(6):1053-1062. PubMed ID: 38755322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissecting transition cells from single-cell transcriptome data through multiscale stochastic dynamics.
    Zhou P; Wang S; Li T; Nie Q
    Nat Commun; 2021 Sep; 12(1):5609. PubMed ID: 34556644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding.
    Shen R; Liu L; Wu Z; Zhang Y; Yuan Z; Guo J; Yang F; Zhang C; Chen B; Feng W; Liu C; Guo J; Fan G; Zhang Y; Li Y; Xu X; Yao J
    Nat Commun; 2022 Dec; 13(1):7640. PubMed ID: 36496406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imputation of spatially-resolved transcriptomes by graph-regularized tensor completion.
    Li Z; Song T; Yong J; Kuang R
    PLoS Comput Biol; 2021 Apr; 17(4):e1008218. PubMed ID: 33826608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. spliceJAC: transition genes and state-specific gene regulation from single-cell transcriptome data.
    Bocci F; Zhou P; Nie Q
    Mol Syst Biol; 2022 Nov; 18(11):e11176. PubMed ID: 36321549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Entropy-based inference of transition states and cellular trajectory for single-cell transcriptomics.
    Gan Y; Guo C; Guo W; Xu G; Zou G
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35696651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benchmarking mapping algorithms for cell-type annotating in mouse brain by integrating single-nucleus RNA-seq and Stereo-seq data.
    Tao Q; Xu Y; He Y; Luo T; Li X; Han L
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38796691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal single-cell RNA sequencing of developing chicken hearts identifies interplay between cellular differentiation and morphogenesis.
    Mantri M; Scuderi GJ; Abedini-Nassab R; Wang MFZ; McKellar D; Shi H; Grodner B; Butcher JT; De Vlaminck I
    Nat Commun; 2021 Mar; 12(1):1771. PubMed ID: 33741943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Embryo-scale, single-cell spatial transcriptomics.
    Srivatsan SR; Regier MC; Barkan E; Franks JM; Packer JS; Grosjean P; Duran M; Saxton S; Ladd JJ; Spielmann M; Lois C; Lampe PD; Shendure J; Stevens KR; Trapnell C
    Science; 2021 Jul; 373(6550):111-117. PubMed ID: 34210887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impeller: a path-based heterogeneous graph learning method for spatial transcriptomic data imputation.
    Duan Z; Riffle D; Li R; Liu J; Min MR; Zhang J
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38806165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression.
    Xia C; Fan J; Emanuel G; Hao J; Zhuang X
    Proc Natl Acad Sci U S A; 2019 Sep; 116(39):19490-19499. PubMed ID: 31501331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inference and multiscale model of epithelial-to-mesenchymal transition via single-cell transcriptomic data.
    Sha Y; Wang S; Zhou P; Nie Q
    Nucleic Acids Res; 2020 Sep; 48(17):9505-9520. PubMed ID: 32870263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography.
    Andersson A; Bergenstråhle J; Asp M; Bergenstråhle L; Jurek A; Fernández Navarro J; Lundeberg J
    Commun Biol; 2020 Oct; 3(1):565. PubMed ID: 33037292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. scBOL: a universal cell type identification framework for single-cell and spatial transcriptomics data.
    Zhai Y; Chen L; Deng M
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38678389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors.
    Li H; Courtois ET; Sengupta D; Tan Y; Chen KH; Goh JJL; Kong SL; Chua C; Hon LK; Tan WS; Wong M; Choi PJ; Wee LJK; Hillmer AM; Tan IB; Robson P; Prabhakar S
    Nat Genet; 2017 May; 49(5):708-718. PubMed ID: 28319088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram.
    Biancalani T; Scalia G; Buffoni L; Avasthi R; Lu Z; Sanger A; Tokcan N; Vanderburg CR; Segerstolpe Å; Zhang M; Avraham-Davidi I; Vickovic S; Nitzan M; Ma S; Subramanian A; Lipinski M; Buenrostro J; Brown NB; Fanelli D; Zhuang X; Macosko EZ; Regev A
    Nat Methods; 2021 Nov; 18(11):1352-1362. PubMed ID: 34711971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SpatialPrompt: spatially aware scalable and accurate tool for spot deconvolution and domain identification in spatial transcriptomics.
    Swain AK; Pandit V; Sharma J; Yadav P
    Commun Biol; 2024 May; 7(1):639. PubMed ID: 38796505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in spatially resolved transcriptomics: challenges and opportunities.
    Lee J; Yoo M; Choi J
    BMB Rep; 2022 Mar; 55(3):113-124. PubMed ID: 35168703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BANKSY unifies cell typing and tissue domain segmentation for scalable spatial omics data analysis.
    Singhal V; Chou N; Lee J; Yue Y; Liu J; Chock WK; Lin L; Chang YC; Teo EML; Aow J; Lee HK; Chen KH; Prabhakar S
    Nat Genet; 2024 Mar; 56(3):431-441. PubMed ID: 38413725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. scEpath: energy landscape-based inference of transition probabilities and cellular trajectories from single-cell transcriptomic data.
    Jin S; MacLean AL; Peng T; Nie Q
    Bioinformatics; 2018 Jun; 34(12):2077-2086. PubMed ID: 29415263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.