These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 38755452)
1. Effectiveness of deep learning-based reconstruction for improvement of image quality and liver tumor detectability in the hepatobiliary phase of gadoxetic acid-enhanced magnetic resonance imaging. Takayama Y; Sato K; Tanaka S; Murayama R; Jingu R; Yoshimitsu K Abdom Radiol (NY); 2024 Oct; 49(10):3450-3463. PubMed ID: 38755452 [TBL] [Abstract][Full Text] [Related]
2. High spatial resolution, respiratory-gated, t1-weighted magnetic resonance imaging of the liver and the biliary tract during the hepatobiliary phase of gadoxetic Acid-enhanced magnetic resonance imaging. Lee ES; Lee JM; Yu MH; Shin CI; Woo HS; Joo I; Stemmer A; Han JK; Choi BI J Comput Assist Tomogr; 2014; 38(3):360-6. PubMed ID: 24681858 [TBL] [Abstract][Full Text] [Related]
3. Enhancing gadoxetic acid-enhanced liver MRI: a synergistic approach with deep learning CAIPIRINHA-VIBE and optimized fat suppression techniques. Wei H; Yoon JH; Jeon SK; Choi JW; Lee J; Kim JH; Nickel MD; Song B; Duan T; Lee JM Eur Radiol; 2024 Oct; 34(10):6712-6725. PubMed ID: 38492004 [TBL] [Abstract][Full Text] [Related]
4. Clinical Feasibility of Free-Breathing Dynamic T1-Weighted Imaging With Gadoxetic Acid-Enhanced Liver Magnetic Resonance Imaging Using a Combination of Variable Density Sampling and Compressed Sensing. Yoon JH; Yu MH; Chang W; Park JY; Nickel MD; Son Y; Kiefer B; Lee JM Invest Radiol; 2017 Oct; 52(10):596-604. PubMed ID: 28492418 [TBL] [Abstract][Full Text] [Related]
5. Navigated three-dimensional T1-weighted gradient-echo sequence for gadoxetic acid liver magnetic resonance imaging in patients with limited breath-holding capacity. Yoon JH; Lee JM; Lee ES; Baek J; Lee S; Iwadate Y; Han JK; Choi BI Abdom Imaging; 2015 Feb; 40(2):278-88. PubMed ID: 25112454 [TBL] [Abstract][Full Text] [Related]
6. Deep learning-based reconstruction and 3D hybrid profile order technique for MRCP at 3T: evaluation of image quality and acquisition time. Shiraishi K; Nakaura T; Uetani H; Nagayama Y; Kidoh M; Kobayashi N; Morita K; Yamahita Y; Tanaka Y; Baba H; Hirai T Eur Radiol; 2023 Nov; 33(11):7585-7594. PubMed ID: 37178197 [TBL] [Abstract][Full Text] [Related]
7. Fat-suppressed, three-dimensional T1-weighted imaging using high-acceleration parallel acquisition and a dual-echo Dixon technique for gadoxetic acid-enhanced liver MRI at 3 T. Yoon JH; Lee JM; Yu MH; Kim EJ; Han JK; Choi BI Acta Radiol; 2015 Dec; 56(12):1454-62. PubMed ID: 25480475 [TBL] [Abstract][Full Text] [Related]
8. Breath-hold High-resolution T1-weighted Gradient Echo Liver MR Imaging with Compressed Sensing Obtained during the Gadoxetic Acid-enhanced Hepatobiliary Phase: Image Quality and Lesion Visibility Compared with a Standard T1-weighted Sequence. Ihara K; Onoda H; Tanabe M; Iida E; Ueda T; Kobayashi T; Higashi M; Nickel MD; Imai H; Ito K Magn Reson Med Sci; 2024 Apr; 23(2):146-152. PubMed ID: 36740257 [TBL] [Abstract][Full Text] [Related]
9. Deep learning-based image reconstruction for the multi-arterial phase images: improvement of the image quality to assess the small hypervascular hepatic tumor on gadoxetic acid-enhanced liver MRI. Yun SM; Hong SB; Lee NK; Kim S; Ji YH; Seo HI; Park YM; Noh BG; Nickel MD Abdom Radiol (NY); 2024 Jun; 49(6):1861-1869. PubMed ID: 38512517 [TBL] [Abstract][Full Text] [Related]
10. Compressed sensing with deep learning reconstruction: Improving capability of gadolinium-EOB-enhanced 3D T1WI. Nagata H; Ohno Y; Yoshikawa T; Yamamoto K; Shinohara M; Ikedo M; Yui M; Matsuyama T; Takahashi T; Bando S; Furuta M; Ueda T; Ozawa Y; Toyama H Magn Reson Imaging; 2024 May; 108():67-76. PubMed ID: 38309378 [TBL] [Abstract][Full Text] [Related]
11. Usefulness of pituitary high-resolution 3D MRI with deep-learning-based reconstruction for perioperative evaluation of pituitary adenomas. Ishimoto Y; Ide S; Watanabe K; Oyu K; Kasai S; Umemura Y; Sasaki M; Nagaya H; Tatsuo S; Nozaki A; Ikushima Y; Wakayama T; Asano K; Saito A; Tomiyama M; Kakeda S Neuroradiology; 2024 Jun; 66(6):937-945. PubMed ID: 38374411 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of a respiratory navigator-gating technique in Gd-EOB-DTPA-enhanced magnetic resonance imaging for the assessment of liver tumors. Ogasawara G; Inoue Y; Matsunaga K; Fujii K; Hata H; Miyatake H; Iwadate Y Eur J Radiol; 2016 Jun; 85(6):1232-7. PubMed ID: 27161075 [TBL] [Abstract][Full Text] [Related]
13. Ultra-High-Resolution T2-Weighted PROPELLER MRI of the Rectum With Deep Learning Reconstruction: Assessment of Image Quality and Diagnostic Performance. Matsumoto S; Tsuboyama T; Onishi H; Fukui H; Honda T; Wakayama T; Wang X; Matsui T; Nakamoto A; Ota T; Kiso K; Osawa K; Tomiyama N Invest Radiol; 2024 Jul; 59(7):479-488. PubMed ID: 37975732 [TBL] [Abstract][Full Text] [Related]
14. Super-resolution deep learning reconstruction approach for enhanced visualization in lumbar spine MR bone imaging. Hokamura M; Nakaura T; Yoshida N; Uetani H; Shiraishi K; Kobayashi N; Matsuo K; Morita K; Nagayama Y; Kidoh M; Yamashita Y; Miyamoto T; Hirai T Eur J Radiol; 2024 Sep; 178():111587. PubMed ID: 39002269 [TBL] [Abstract][Full Text] [Related]
15. Feasibility of high-resolution magnetic resonance imaging of the liver using deep learning reconstruction based on the deep learning denoising technique. Tanabe M; Higashi M; Yonezawa T; Yamaguchi T; Iida E; Furukawa M; Okada M; Shinoda K; Ito K Magn Reson Imaging; 2021 Jul; 80():121-126. PubMed ID: 33971240 [TBL] [Abstract][Full Text] [Related]
16. Application of a deep learning algorithm for three-dimensional T1-weighted gradient-echo imaging of gadoxetic acid-enhanced MRI in patients at a high risk of hepatocellular carcinoma. Kim JH; Yoon JH; Kim SW; Park J; Bae SH; Lee JM Abdom Radiol (NY); 2024 Mar; 49(3):738-747. PubMed ID: 38095685 [TBL] [Abstract][Full Text] [Related]
17. Effect of Deep Learning Reconstruction on Respiratory-triggered T2-weighted MR Imaging of the Liver: A Comparison between the Single-shot Fast Spin-echo and Fast Spin-echo Sequences. Kiso K; Tsuboyama T; Onishi H; Ogawa K; Nakamoto A; Tatsumi M; Ota T; Fukui H; Yano K; Honda T; Kakemoto S; Koyama Y; Tarewaki H; Tomiyama N Magn Reson Med Sci; 2024 Apr; 23(2):214-224. PubMed ID: 36990740 [TBL] [Abstract][Full Text] [Related]
18. Free-breathing radial 3D fat-suppressed T1-weighted gradient echo sequence: a viable alternative for contrast-enhanced liver imaging in patients unable to suspend respiration. Chandarana H; Block TK; Rosenkrantz AB; Lim RP; Kim D; Mossa DJ; Babb JS; Kiefer B; Lee VS Invest Radiol; 2011 Oct; 46(10):648-53. PubMed ID: 21577119 [TBL] [Abstract][Full Text] [Related]
19. High-resolution free-breathing hepatobiliary phase MRI of the liver using XD-GRASP. Chen L; Xu J; Liu D; Ji B; Wang J; Zeng X; Zhang J; Feng L Magn Reson Imaging; 2024 Jun; 109():42-48. PubMed ID: 38447629 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional heavily T2-weighted FLAIR in the detection of blood-labyrinthine barrier leakage in patients with sudden sensorineural hearing loss: comparison with T1 sequences and application of deep learning-based reconstruction. Kim M; Lee HJ; Lee S; Lee J; Kang Y Eur Radiol; 2024 Aug; 34(8):5379-5388. PubMed ID: 38231393 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]