These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38755539)

  • 1. Collision Oxidation Behavior of Silver Nanoparticles in Alkaline Solution.
    Xu Y; Sun AR; Liu HY; Zhang ZL
    J Phys Chem Lett; 2024 May; 15(21):5594-5599. PubMed ID: 38755539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical Detection and Analysis of Various Current Responses of a Single Ag Nanoparticle Collision in an Alkaline Electrolyte Solution.
    Kim KJ; Kwon SJ
    Int J Mol Sci; 2022 Jul; 23(13):. PubMed ID: 35806475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial Intelligence-Assisted Multiparameter Size Discrimination of Silver Nanoparticles through Electrochemical Collision.
    Xu Y; Jiang WJ; Bai YY; Yang YJ; Zhang ZL
    Anal Chem; 2024 Apr; 96(16):6195-6201. PubMed ID: 38607805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collision, Adhesion, and Oxidation of Single Ag Nanoparticles on a Polysulfide-Modified Microelectrode.
    Defnet PA; Zhang B
    J Am Chem Soc; 2021 Oct; 143(39):16154-16162. PubMed ID: 34549950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Various Current Responses of Single Silver Nanoparticle Collisions on a Gold Ultramicroelectrode Depending on the Collision Conditions.
    Mun SK; Lee S; Kim DY; Kwon SJ
    Chem Asian J; 2017 Sep; 12(18):2434-2440. PubMed ID: 28662286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging Dynamic Collision and Oxidation of Single Silver Nanoparticles at the Electrode/Solution Interface.
    Hao R; Fan Y; Zhang B
    J Am Chem Soc; 2017 Sep; 139(35):12274-12282. PubMed ID: 28799330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments.
    Odzak N; Kistler D; Sigg L
    Environ Pollut; 2017 Jul; 226():1-11. PubMed ID: 28395184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collision Dynamics during the Electrooxidation of Individual Silver Nanoparticles.
    Robinson DA; Liu Y; Edwards MA; Vitti NJ; Oja SM; Zhang B; White HS
    J Am Chem Soc; 2017 Nov; 139(46):16923-16931. PubMed ID: 29083174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of Multipeak Collision Behavior during the Electro-Oxidation of Single Ag Nanoparticles.
    Oja SM; Robinson DA; Vitti NJ; Edwards MA; Liu Y; White HS; Zhang B
    J Am Chem Soc; 2017 Jan; 139(2):708-718. PubMed ID: 27936665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact and oxidation of single silver nanoparticles at electrode surfaces: one shot
    Ustarroz J; Kang M; Bullions E; Unwin PR
    Chem Sci; 2017 Mar; 8(3):1841-1853. PubMed ID: 28553474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A voltammetric investigation of the sulfidation of silver nanoparticles by zinc sulfide.
    Lieb HC; Nguyen BD; Ramsayer ER; Mullaugh KM
    Sci Total Environ; 2020 Jun; 720():137685. PubMed ID: 32325601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlated Anodic-Cathodic Nanocollision Events Reveal Redox Behaviors of Single Silver Nanoparticles.
    Hafez ME; Ma H; Peng YY; Ma W; Long YT
    J Phys Chem Lett; 2019 Jun; 10(12):3276-3281. PubMed ID: 31141367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of surface charge and electrode material on the size-dependent oxidation of surface-attached metal nanoparticles.
    Masitas RA; Khachian IV; Bill BL; Zamborini FP
    Langmuir; 2014 Nov; 30(43):13075-84. PubMed ID: 25260111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possibilities of single particle-ICP-MS for determining/characterizing titanium dioxide and silver nanoparticles in human urine.
    Badalova K; Herbello-Hermelo P; Bermejo-Barrera P; Moreda-Piñeiro A
    J Trace Elem Med Biol; 2019 Jul; 54():55-61. PubMed ID: 31109621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability of silver nanoparticle sulfidation products.
    Fletcher ND; Lieb HC; Mullaugh KM
    Sci Total Environ; 2019 Jan; 648():854-860. PubMed ID: 30138885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical Cycling of Polycrystalline Silver Nanoparticles Produces Single-Crystal Silver Nanocrystals.
    Singh P; Carpenter RW; Buttry DA
    Langmuir; 2017 Nov; 33(47):13490-13495. PubMed ID: 29099603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structural conversion from α-AgVO
    McNulty D; Ramasse Q; O'Dwyer C
    Nanoscale; 2016 Sep; 8(36):16266-16275. PubMed ID: 27722389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unique Voltammetry of Silver Nanoparticles: From Single Particle to Aggregates.
    Chen W; Wang H; Tang H; Yang C; Li Y
    Anal Chem; 2019 Nov; 91(22):14188-14191. PubMed ID: 31638365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilizer-free silver nanoparticles as efficient catalysts for electrochemical reduction of oxygen.
    Treshchalov A; Erikson H; Puust L; Tsarenko S; Saar R; Vanetsev A; Tammeveski K; Sildos I
    J Colloid Interface Sci; 2017 Apr; 491():358-366. PubMed ID: 28056445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size-dependent electrochemical oxidation of silver nanoparticles.
    Ivanova OS; Zamborini FP
    J Am Chem Soc; 2010 Jan; 132(1):70-2. PubMed ID: 20000318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.