These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38755803)

  • 1. Relativistic chaotic scattering: Unveiling scaling laws for trapped trajectories.
    Blesa F; Bernal JD; Seoane JM; Sanjuán MAFM
    Phys Rev E; 2024 Apr; 109(4-1):044204. PubMed ID: 38755803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global relativistic effects in chaotic scattering.
    Bernal JD; Seoane JM; Sanjuán MAF
    Phys Rev E; 2017 Mar; 95(3-1):032205. PubMed ID: 28415234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wada basins and chaotic invariant sets in the Hénon-Heiles system.
    Aguirre J; Vallejo JC; Sanjuán MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):066208. PubMed ID: 11736269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncertainty dimension and basin entropy in relativistic chaotic scattering.
    Bernal JD; Seoane JM; Sanjuán MAF
    Phys Rev E; 2018 Apr; 97(4-1):042214. PubMed ID: 29758743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Weakly noisy chaotic scattering.
    Bernal JD; Seoane JM; Sanjuán MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032914. PubMed ID: 24125332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noisy scattering dynamics in the randomly driven Hénon-Heiles oscillator.
    Gan C; Yang S; Lei H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 2):066204. PubMed ID: 21230720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the Newtonian and relativistic predicted trajectories for a low-speed periodically delta-kicked system.
    Lan BL
    Chaos; 2006 Sep; 16(3):033107. PubMed ID: 17014212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Basin topology in dissipative chaotic scattering.
    Seoane JM; Aguirre J; Sanjuán MA; Lai YC
    Chaos; 2006 Jun; 16(2):023101. PubMed ID: 16822004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of newtonian and special-relativistic trajectories with the general-relativistic trajectory for a low-speed weak-gravity system.
    Liang SN; Lan BL
    PLoS One; 2012; 7(4):e34720. PubMed ID: 22536328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chaos in an exact relativistic three-body self-gravitating system.
    Burnell F; Malecki JJ; Mann RB; Ohta T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016214. PubMed ID: 14995700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Newtonian and special-relativistic predictions for the trajectories of a low-speed scattering system.
    Lan BL; Borondo F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036201. PubMed ID: 21517569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient chaos under coordinate transformations in relativistic systems.
    Fernández DS; López ÁG; Seoane JM; Sanjuán MAF
    Phys Rev E; 2020 Jun; 101(6-1):062212. PubMed ID: 32688505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Threshold law for escaping from the Hénon-Heiles system.
    Zhao HJ; Du ML
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):027201. PubMed ID: 17930178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Newtonian versus special-relativistic statistical predictions for low-speed scattering.
    Liang SN; Borondo F; Lan BL
    PLoS One; 2012; 7(11):e48447. PubMed ID: 23152774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytic approach to bifurcation cascades in a class of generalized Hénon-Heiles potentials.
    Fedotkin SN; Magner AG; Brack M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066219. PubMed ID: 18643362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noise-enhanced trapping in chaotic scattering.
    Altmann EG; Endler A
    Phys Rev Lett; 2010 Dec; 105(24):244102. PubMed ID: 21231529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-body dynamics in a (1+1) -dimensional relativistic self-gravitating system.
    Malecki JJ; Mann RB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066208. PubMed ID: 15244709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the gravitational radius on asymptotic behavior of the relativistic Sitnikov problem.
    Bernal JD; Seoane JM; Vallejo JC; Huang L; Sanjuán MAF
    Phys Rev E; 2020 Oct; 102(4-1):042204. PubMed ID: 33212716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical fractal Weyl laws for chaotic resonance states in open mixed systems.
    Körber MJ; Michler M; Bäcker A; Ketzmerick R
    Phys Rev Lett; 2013 Sep; 111(11):114102. PubMed ID: 24074090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of "leaking" Hamiltonian systems.
    Schneider J; Tél T; Neufeld Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066218. PubMed ID: 12513395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.