These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38755810)

  • 1. Thermal conduction force under standing and quasistanding temperature field.
    Tan H; Zhao Y; Huang J
    Phys Rev E; 2024 Apr; 109(4-1):044124. PubMed ID: 38755810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable thermal conduction force without macroscopic temperature gradients.
    Tan H; Qiu Y; Xu L; Huang J
    Phys Rev E; 2023 Sep; 108(3-1):034105. PubMed ID: 37849135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of the acoustic radiation force exerted on a sphere by standing and quasistanding zero-order Bessel beam tweezers of variable half-cone angles.
    Mitri FG; Fellah ZE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2469-78. PubMed ID: 19049926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel contactless technique for thermal field mapping and thermal conductivity determination: two-laser Raman thermometry.
    Reparaz JS; Chavez-Angel E; Wagner MR; Graczykowski B; Gomis-Bresco J; Alzina F; Sotomayor Torres CM
    Rev Sci Instrum; 2014 Mar; 85(3):034901. PubMed ID: 24689609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A direct method to calculate thermal conductivity and its application in solid HMX.
    Long Y; Chen J; Liu YG; Nie FD; Sun JS
    J Phys Condens Matter; 2010 May; 22(18):185404. PubMed ID: 21393685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical determination of anisotropic thermal conductivity for initially defect-free and defective TATB single crystals.
    Kroonblawd MP; Sewell TD
    J Chem Phys; 2014 Nov; 141(18):184501. PubMed ID: 25399151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pushing thermal conductivity to its lower limit in crystals with simple structures.
    Zeng Z; Shen X; Cheng R; Perez O; Ouyang N; Fan Z; Lemoine P; Raveau B; Guilmeau E; Chen Y
    Nat Commun; 2024 Apr; 15(1):3007. PubMed ID: 38589376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherent and Incoherent Impacts of Nanopillars on the Thermal Conductivity in Silicon Nanomembranes.
    Huang X; Ohori D; Yanagisawa R; Anufriev R; Samukawa S; Nomura M
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25478-25483. PubMed ID: 32369329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropy Reversal of Thermal Conductivity in Silicon Nanowire Networks Driven by Quasi-Ballistic Phonon Transport.
    Kim B; Barbier-Chebbah F; Ogawara Y; Jalabert L; Yanagisawa R; Anufriev R; Nomura M
    ACS Nano; 2024 Apr; 18(15):10557-10565. PubMed ID: 38575375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics.
    Zhang M; Lussetti E; de Souza LE; Müller-Plathe F
    J Phys Chem B; 2005 Aug; 109(31):15060-7. PubMed ID: 16852906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The stiffness-thermal conduction relationship at the composite interface: the effect of particle alignment on the long-range confinement of polymer chains monitored by scanning thermal microscopy.
    Li Y; Mehra N; Ji T; Yang X; Mu L; Gu J; Zhu J
    Nanoscale; 2018 Jan; 10(4):1695-1703. PubMed ID: 29308501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal, dielectric characteristics and conduction mechanism of azodyes derived from quinoline and their copper complexes.
    El-Ghamaz NA; Diab MA; El-Bindary AA; El-Sonbati AZ; Nozha SG
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 May; 143():200-12. PubMed ID: 25727297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High thermal conductivity in wafer-scale cubic silicon carbide crystals.
    Cheng Z; Liang J; Kawamura K; Zhou H; Asamura H; Uratani H; Tiwari J; Graham S; Ohno Y; Nagai Y; Feng T; Shigekawa N; Cahill DG
    Nat Commun; 2022 Nov; 13(1):7201. PubMed ID: 36418359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonequilibrium molecular dynamics calculation of the thermal conductivity of amorphous polyamide-6,6.
    Lussetti E; Terao T; Müller-Plathe F
    J Phys Chem B; 2007 Oct; 111(39):11516-23. PubMed ID: 17824639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the role of rock matrix to heat transfer in a fracture-rock matrix system.
    Zhou R; Zhan H; Wang Y
    J Contam Hydrol; 2022 Feb; 245():103950. PubMed ID: 34979415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The important role of strain on phonon hydrodynamics in diamond-like bi-layer graphene.
    Hu Y; Li D; Yin Y; Li S; Ding G; Zhou H; Zhang G
    Nanotechnology; 2020 Aug; 31(33):335711. PubMed ID: 32353835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of room-temperature ballistic thermal conduction persisting over 8.3 µm in SiGe nanowires.
    Hsiao TK; Chang HK; Liou SC; Chu MW; Lee SC; Chang CW
    Nat Nanotechnol; 2013 Jul; 8(7):534-8. PubMed ID: 23812186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical and thermal conduction in atomic layer deposition nanobridges down to 7 nm thickness.
    Yoneoka S; Lee J; Liger M; Yama G; Kodama T; Gunji M; Provine J; Howe RT; Goodson KE; Kenny TW
    Nano Lett; 2012 Feb; 12(2):683-6. PubMed ID: 22224582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quasi-ballistic Electronic Thermal Conduction in Metal Inverse Opals.
    Barako MT; Sood A; Zhang C; Wang J; Kodama T; Asheghi M; Zheng X; Braun PV; Goodson KE
    Nano Lett; 2016 Apr; 16(4):2754-61. PubMed ID: 26986050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of vacancy concentration on the lattice thermal conductivity of CH
    Hong SN; Yu CJ; Jong UG; Choe SH; Kye YH
    RSC Adv; 2021 Oct; 11(54):34015-34023. PubMed ID: 35497285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.