These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 38755877)
1. Implementation of contact line motion based on the phase-field lattice Boltzmann method. Ju L; Guo Z; Yan B; Sun S Phys Rev E; 2024 Apr; 109(4-2):045307. PubMed ID: 38755877 [TBL] [Abstract][Full Text] [Related]
2. Simplified wetting boundary scheme in phase-field lattice Boltzmann model for wetting phenomena on curved boundaries. Zhang S; Tang J; Wu H Phys Rev E; 2023 Aug; 108(2-2):025303. PubMed ID: 37723684 [TBL] [Abstract][Full Text] [Related]
3. An alternative method to implement contact angle boundary condition and its application in hybrid lattice-Boltzmann finite-difference simulations of two-phase flows with immersed surfaces. Huang JJ; Wu J; Huang H Eur Phys J E Soft Matter; 2018 Feb; 41(2):17. PubMed ID: 29404782 [TBL] [Abstract][Full Text] [Related]
4. Color-gradient lattice Boltzmann model for simulating droplet motion with contact-angle hysteresis. Ba Y; Liu H; Sun J; Zheng R Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043306. PubMed ID: 24229303 [TBL] [Abstract][Full Text] [Related]
5. Lattice Boltzmann method for contact-line motion of binary fluids with high density ratio. Liang H; Liu H; Chai Z; Shi B Phys Rev E; 2019 Jun; 99(6-1):063306. PubMed ID: 31330728 [TBL] [Abstract][Full Text] [Related]
6. Improved partially saturated method for the lattice Boltzmann pseudopotential multicomponent flows. Wang G; D'Ortona U; Guichardon P Phys Rev E; 2023 Mar; 107(3-2):035301. PubMed ID: 37072946 [TBL] [Abstract][Full Text] [Related]
7. Wetting and Spreading Behavior of Axisymmetric Compound Droplets on Curved Solid Walls Using Conservative Phase Field Lattice Boltzmann Method. Wang Y; Huang JJ Entropy (Basel); 2024 Feb; 26(2):. PubMed ID: 38392427 [TBL] [Abstract][Full Text] [Related]
8. Phase-field-simplified lattice Boltzmann method for modeling solid-liquid phase change. Chen Z; Shu C; Yang LM; Zhao X; Liu NY Phys Rev E; 2021 Feb; 103(2-1):023308. PubMed ID: 33736036 [TBL] [Abstract][Full Text] [Related]
9. Alternative wetting boundary condition for the chemical-potential-based free-energy lattice Boltzmann model. Yu Y; Li Q; Huang RZ Phys Rev E; 2021 Jul; 104(1-2):015303. PubMed ID: 34412207 [TBL] [Abstract][Full Text] [Related]
10. Implementation of contact angles in pseudopotential lattice Boltzmann simulations with curved boundaries. Li Q; Yu Y; Luo KH Phys Rev E; 2019 Nov; 100(5-1):053313. PubMed ID: 31869872 [TBL] [Abstract][Full Text] [Related]
11. Lattice Boltzmann Modeling of Drying of Porous Media Considering Contact Angle Hysteresis. Qin F; Zhao J; Kang Q; Derome D; Carmeliet J Transp Porous Media; 2021; 140(1):395-420. PubMed ID: 34720284 [TBL] [Abstract][Full Text] [Related]
12. Lattice Boltzmann simulation of three-phase flows with moving contact lines on curved surfaces. Li S; Lu Y; Jiang F; Liu H Phys Rev E; 2021 Jul; 104(1-2):015310. PubMed ID: 34412346 [TBL] [Abstract][Full Text] [Related]
13. Lattice Boltzmann model for ternary fluids with solid particles. He Q; Li Y; Huang W; Hu Y; Wang Y Phys Rev E; 2020 Mar; 101(3-1):033307. PubMed ID: 32289995 [TBL] [Abstract][Full Text] [Related]
14. Equation-of-state-dependent surface free-energy density for wettability in lattice Boltzmann method. Huang R; Yang H; Xing Y Phys Rev E; 2023 Feb; 107(2-2):025309. PubMed ID: 36932571 [TBL] [Abstract][Full Text] [Related]
15. Boundary condition for lattice Boltzmann modeling of microscale gas flows with curved walls in the slip regime. Tao S; Guo Z Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):043305. PubMed ID: 25974610 [TBL] [Abstract][Full Text] [Related]
16. Multiphase curved boundary condition in lattice Boltzmann method. Yao Y; Liu Y; Zhong X; Wen B Phys Rev E; 2022 Jul; 106(1-2):015307. PubMed ID: 35974580 [TBL] [Abstract][Full Text] [Related]
17. Phase-field-based lattice Boltzmann model for liquid-gas-solid flow. He Q; Li Y; Huang W; Hu Y; Wang Y Phys Rev E; 2019 Sep; 100(3-1):033314. PubMed ID: 31639949 [TBL] [Abstract][Full Text] [Related]
18. Discrete effects on boundary conditions of the lattice Boltzmann method for fluid flows with curved no-slip walls. Wang L; Tao S; Meng X; Zhang K; Lu G Phys Rev E; 2020 Jun; 101(6-1):063307. PubMed ID: 32688558 [TBL] [Abstract][Full Text] [Related]
19. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference. Liu H; Ju Y; Wang N; Xi G; Zhang Y Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033306. PubMed ID: 26465585 [TBL] [Abstract][Full Text] [Related]
20. A numerical study of droplet dynamic behaviors on a micro-structured surface using a three dimensional color-gradient lattice Boltzmann model. Cheng Z; Ba Y; Sun J; Wang C; Cai S; Fu X Soft Matter; 2018 Jan; 14(5):837-847. PubMed ID: 29308826 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]