These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38755904)

  • 1. Trapping of deformable active particles by a periodic background potential.
    Li JJ; Guo RX; Ai BQ
    Phys Rev E; 2024 Apr; 109(4-1):044143. PubMed ID: 38755904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trapping and sorting of active matter in a periodic background potential.
    Ribeiro HE; Ferreira WP; Potiguar FQ
    Phys Rev E; 2020 Mar; 101(3-1):032126. PubMed ID: 32289962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic sorting with a moving array of optical traps.
    Dasgupta R; Ahlawat S; Gupta PK
    Appl Opt; 2012 Jul; 51(19):4377-87. PubMed ID: 22772110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Axial optical trapping forces on two particles trapped simultaneously by optical tweezers.
    Xu S; Li Y; Lou L
    Appl Opt; 2005 May; 44(13):2667-72. PubMed ID: 15881076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical trapping of sub-millimeter sized particles and microorganisms.
    Lialys L; Lialys J; Salandrino A; Ackley BD; Fardad S
    Sci Rep; 2023 May; 13(1):8615. PubMed ID: 37244967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capturing self-propelled particles in a moving microwedge.
    Kaiser A; Popowa K; Wensink HH; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022311. PubMed ID: 24032837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfluidic-based hydrodynamic trap for single particles.
    Johnson-Chavarria EM; Tanyeri M; Schroeder CM
    J Vis Exp; 2011 Jan; (47):. PubMed ID: 21304467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Particle size effect on sorting with optical lattice.
    Madadi E; Biagooi M; Mohammadjafari F; Nedaaee Oskoee S
    Sci Rep; 2020 Oct; 10(1):18294. PubMed ID: 33106550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geometrical effects in microfluidic-based microarrays for rapid, efficient single-cell capture of mammalian stem cells and plant cells.
    Lawrenz A; Nason F; Cooper-White JJ
    Biomicrofluidics; 2012 Jun; 6(2):24112-2411217. PubMed ID: 22655021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic particle trapping, release, and sorting by microvortices on a substrate.
    Liu SJ; Wei HH; Hwang SH; Chang HC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026308. PubMed ID: 20866906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical trapping of metallic Rayleigh particles.
    Svoboda K; Block SM
    Opt Lett; 1994 Jul; 19(13):930-2. PubMed ID: 19844491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rectification and diffusion of self-propelled particles in a two-dimensional corrugated channel.
    Ai BQ; Chen QY; He YF; Li FG; Zhong WR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062129. PubMed ID: 24483408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Confinement and Collective Escape of Active Particles.
    Aranson IS; Pikovsky A
    Phys Rev Lett; 2022 Mar; 128(10):108001. PubMed ID: 35333075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film.
    Pang Y; Gordon R
    Nano Lett; 2011 Sep; 11(9):3763-7. PubMed ID: 21838243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gear-like rotatable optical trapping with radial carpet beams.
    Bayat J; Hajizadeh F; Khazaei AM; Rasouli S
    Sci Rep; 2020 Jul; 10(1):11721. PubMed ID: 32678205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple traps created with an inclined dual-fiber system.
    Liu Y; Yu M
    Opt Express; 2009 Nov; 17(24):21680-90. PubMed ID: 19997409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation and Experiment of the Trapping Trajectory for Janus Particles in Linearly Polarized Optical Traps.
    Gao X; Zhai C; Lin Z; Chen Y; Li H; Hu C
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brownian diffusion of nano-particles in optical traps.
    Davis TJ
    Opt Express; 2007 Mar; 15(5):2702-12. PubMed ID: 19532507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of geometry on dielectrophoretic trap stiffness in microparticle trapping.
    Rahman MRU; Kwak TJ; Woehl JC; Chang WJ
    Biomed Microdevices; 2021 Jun; 23(3):33. PubMed ID: 34185161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.