These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 38755923)
1. Information geometric bound on general chemical reaction networks. Mizohata T; Kobayashi TJ; Bouchard LS; Miyahara H Phys Rev E; 2024 Apr; 109(4-1):044308. PubMed ID: 38755923 [TBL] [Abstract][Full Text] [Related]
2. Programming and training rate-independent chemical reaction networks. Vasić M; Chalk C; Luchsinger A; Khurshid S; Soloveichik D Proc Natl Acad Sci U S A; 2022 Jun; 119(24):e2111552119. PubMed ID: 35679345 [TBL] [Abstract][Full Text] [Related]
3. Deterministic Function Computation with Chemical Reaction Networks. Chen HL; Doty D; Soloveichik D Nat Comput; 2012; 7433():25-42. PubMed ID: 25383068 [TBL] [Abstract][Full Text] [Related]
4. Synthesizing and tuning stochastic chemical reaction networks with specified behaviours. Murphy N; Petersen R; Phillips A; Yordanov B; Dalchau N J R Soc Interface; 2018 Aug; 15(145):. PubMed ID: 30111661 [TBL] [Abstract][Full Text] [Related]
8. Complex chemical reaction networks for future information processing. Csizi KS; Lörtscher E Front Neurosci; 2024; 18():1379205. PubMed ID: 38545604 [TBL] [Abstract][Full Text] [Related]
9. Nonlinear Regulation of Enzyme-Free DNA Circuitry with Ultrasensitive Switches. Lai W; Xiong X; Wang F; Li Q; Li L; Fan C; Pei H ACS Synth Biol; 2019 Sep; 8(9):2106-2112. PubMed ID: 31461263 [TBL] [Abstract][Full Text] [Related]
10. Universal slow dynamics of chemical reaction networks. Shimada M; Behrad P; De Giuli E Phys Rev E; 2024 Apr; 109(4-1):044105. PubMed ID: 38755882 [TBL] [Abstract][Full Text] [Related]
11. Catalytic reaction dynamics in inhomogeneous networks. Watanabe A; Yakubo K Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052806. PubMed ID: 25353843 [TBL] [Abstract][Full Text] [Related]
12. Thermodynamics of Growth in Open Chemical Reaction Networks. Marehalli Srinivas SG; Avanzini F; Esposito M Phys Rev Lett; 2024 Jun; 132(26):268001. PubMed ID: 38996287 [TBL] [Abstract][Full Text] [Related]
14. Characterizing the conditions for indefinite growth in open chemical reaction networks. Marehalli Srinivas SG; Avanzini F; Esposito M Phys Rev E; 2024 Jun; 109(6-1):064153. PubMed ID: 39020892 [TBL] [Abstract][Full Text] [Related]
15. Composable Rate-Independent Computation in Continuous Chemical Reaction Networks. Chalk C; Kornerup N; Reeves W; Soloveichik D IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(1):250-260. PubMed ID: 31722486 [TBL] [Abstract][Full Text] [Related]
16. Programming discrete distributions with chemical reaction networks. Cardelli L; Kwiatkowska M; Laurenti L Nat Comput; 2018; 17(1):131-145. PubMed ID: 29576758 [TBL] [Abstract][Full Text] [Related]
17. Chemical reaction motifs driving non-equilibrium behaviours in phase separating materials. Osmanović D; Franco E J R Soc Interface; 2023 Nov; 20(208):20230117. PubMed ID: 37907095 [TBL] [Abstract][Full Text] [Related]
18. DNAr: An R Package to Simulate and Analyze CRN and DSD Networks. Vieira DKS; Guterres MV; Marks RA; Oliveira PAC; Fonte Boa MCO; Vilela Neto OP ACS Synth Biol; 2020 Dec; 9(12):3416-3421. PubMed ID: 33283498 [TBL] [Abstract][Full Text] [Related]
19. Stationary distributions via decomposition of stochastic reaction networks. Hoessly L J Math Biol; 2021 Jun; 82(7):67. PubMed ID: 34101026 [TBL] [Abstract][Full Text] [Related]
20. A communication failure and repair mechanism with adjustable transmission rates for PU packets in CRNs. Zhao Y; Lu Q; Ye Z; Chen K Heliyon; 2023 Feb; 9(2):e13184. PubMed ID: 36816294 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]