BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 38756437)

  • 1. Maximizing microcalcification detectability in low-dose dedicated cone-beam breast CT: parallel cascades-based theoretical analysis.
    Larsen T; Tseng HW; Trinate R; Fu Z; Alan Chiang JT; Karellas A; Vedantham S
    J Med Imaging (Bellingham); 2024 May; 11(3):033501. PubMed ID: 38756437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Generalized NEQ and Detectability Index for Tomosynthesis and Cone-Beam CT: From Cascaded Systems Analysis to Human Observers.
    Gang GJ; Lee J; Stayman JW; Tward DJ; Zbijewski W; Prince JL; Siewerdsen JH
    Proc SPIE Int Soc Opt Eng; 2010 Mar; 7622():. PubMed ID: 24307930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of statistical iterative reconstruction for dedicated breast CT.
    Makeev A; Glick SJ
    Med Phys; 2013 Aug; 40(8):081904. PubMed ID: 23927318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling and evaluation of a high-resolution CMOS detector for cone-beam CT of the extremities.
    Cao Q; Sisniega A; Brehler M; Stayman JW; Yorkston J; Siewerdsen JH; Zbijewski W
    Med Phys; 2018 Jan; 45(1):114-130. PubMed ID: 29095489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microcalcification detectability in breast CT images using CNN observers.
    Lyu SH; Abbey CK; Hernandez AM; Boone JM
    Med Phys; 2024 Feb; 51(2):933-945. PubMed ID: 38154070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS flat panel detector: visibility of simulated microcalcifications.
    Shen Y; Zhong Y; Lai CJ; Wang T; Shaw CC
    Med Phys; 2013 Oct; 40(10):101915. PubMed ID: 24089917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visibility of microcalcification in cone beam breast CT: effects of X-ray tube voltage and radiation dose.
    Lai CJ; Shaw CC; Chen L; Altunbas MC; Liu X; Han T; Wang T; Yang WT; Whitman GJ; Tu SJ
    Med Phys; 2007 Jul; 34(7):2995-3004. PubMed ID: 17822008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Technical note: Characterization, validation, and spectral optimization of a dedicated breast CT system for contrast-enhanced imaging.
    Pautasso JJ; Michielsen K; Sechopoulos I
    Med Phys; 2024 May; 51(5):3322-3333. PubMed ID: 38597897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling and design of a cone-beam CT head scanner using task-based imaging performance optimization.
    Xu J; Sisniega A; Zbijewski W; Dang H; Stayman JW; Wang X; Foos DH; Aygun N; Koliatsos VE; Siewerdsen JH
    Phys Med Biol; 2016 Apr; 61(8):3180-207. PubMed ID: 27025783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Fourier-domain task-based detectability index in tomosynthesis and cone-beam CT in relation to human observer performance.
    Gang GJ; Lee J; Stayman JW; Tward DJ; Zbijewski W; Prince JL; Siewerdsen JH
    Med Phys; 2011 Apr; 38(4):1754-68. PubMed ID: 21626910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of kV, filtration, dose, and object size on soft tissue and iodine contrast in dedicated breast CT.
    Hernandez AM; Abbey CK; Ghazi P; Burkett G; Boone JM
    Med Phys; 2020 Jul; 47(7):2869-2880. PubMed ID: 32233091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microcalcification detection using cone-beam CT mammography with a flat-panel imager.
    Gong X; Vedula AA; Glick SJ
    Phys Med Biol; 2004 Jun; 49(11):2183-95. PubMed ID: 15248571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microcalcification detectability using a bench-top prototype photon-counting breast CT based on a Si strip detector.
    Cho HM; Ding H; Barber WC; Iwanczyk JS; Molloi S
    Med Phys; 2015 Jul; 42(7):4401-10. PubMed ID: 26133636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Task-based modeling and optimization of a cone-beam CT scanner for musculoskeletal imaging.
    Prakash P; Zbijewski W; Gang GJ; Ding Y; Stayman JW; Yorkston J; Carrino JA; Siewerdsen JH
    Med Phys; 2011 Oct; 38(10):5612-29. PubMed ID: 21992379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dedicated breast-PET/CT scanner: Numerical observer study of lesion detection.
    Raylman RR; Stolin A; Hays S; Johnson E; Lankas S; Mekonnen M; Roemer K
    Med Phys; 2022 Dec; 49(12):7489-7496. PubMed ID: 36219487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution
    Hernandez AM; Becker AE; Hyun Lyu S; Abbey CK; Boone JM
    J Med Imaging (Bellingham); 2021 Sep; 8(5):052107. PubMed ID: 34307737
    [No Abstract]   [Full Text] [Related]  

  • 17. Cascaded systems analysis of noise and detectability in dual-energy cone-beam CT.
    Gang GJ; Zbijewski W; Webster Stayman J; Siewerdsen JH
    Med Phys; 2012 Aug; 39(8):5145-56. PubMed ID: 22894440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution extremity cone-beam CT with a CMOS detector: Task-based optimization of scintillator thickness.
    Cao Q; Brehler M; Sisniega A; Stayman JW; Yorkston J; Siewerdsen JH; Zbijewski W
    Proc SPIE Int Soc Opt Eng; 2017 Mar; 10132():. PubMed ID: 28989220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of tin prefiltration on extremity cone-beam CT imaging with a twin robotic X-ray system.
    Luetkens KS; Huflage H; Kunz AS; Ritschl L; Herbst M; Kappler S; Ergün S; Goertz L; Pennig L; Bley TA; Gassenmaier T; Grunz JP
    Radiography (Lond); 2022 May; 28(2):433-439. PubMed ID: 34716089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large area CMOS active pixel sensor x-ray imager for digital breast tomosynthesis: Analysis, modeling, and characterization.
    Zhao C; Kanicki J; Konstantinidis AC; Patel T
    Med Phys; 2015 Nov; 42(11):6294-308. PubMed ID: 26520722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.