These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 38756789)
1. High-fidelity imaging of a tumour-associated lysosomal enzyme with an acceptor engineering-boosted near-infrared fluorescent probe. Feng B; Chu F; Fang Y; Liu M; Feng X; Dong J; Chen F; Zeng W Chem Sci; 2024 May; 15(19):7324-7331. PubMed ID: 38756789 [TBL] [Abstract][Full Text] [Related]
2. Specific Near-Infrared Probe for Ultrafast Imaging of Lysosomal β-Galactosidase in Ovarian Cancer Cells. Li X; Pan Y; Chen H; Duan Y; Zhou S; Wu W; Wang S; Liu B Anal Chem; 2020 Apr; 92(8):5772-5779. PubMed ID: 32212603 [TBL] [Abstract][Full Text] [Related]
3. A new near-infrared excitation/emission fluorescent probe for the detection of β-galactosidase in living cells and in vivo. Li Y; Liu F; Zhu D; Zhu T; Zhang Y; Li Y; Luo J; Kong L Talanta; 2022 Jan; 237():122952. PubMed ID: 34736678 [TBL] [Abstract][Full Text] [Related]
4. Real-Time Tracking and In Vivo Visualization of β-Galactosidase Activity in Colorectal Tumor with a Ratiometric Near-Infrared Fluorescent Probe. Gu K; Xu Y; Li H; Guo Z; Zhu S; Zhu S; Shi P; James TD; Tian H; Zhu WH J Am Chem Soc; 2016 Apr; 138(16):5334-40. PubMed ID: 27054782 [TBL] [Abstract][Full Text] [Related]
5. A sensitive fluorescent probe for β-galactosidase activity detection and application in ovarian tumor imaging. Fan F; Zhang L; Zhou X; Mu F; Shi G J Mater Chem B; 2021 Jan; 9(1):170-175. PubMed ID: 33230516 [TBL] [Abstract][Full Text] [Related]
6. Engineering of donor-acceptor-donor curcumin analogues as near-infrared fluorescent probes for Fang D; Wen X; Wang Y; Sun Y; An R; Zhou Y; Ye D; Liu H Theranostics; 2022; 12(7):3178-3195. PubMed ID: 35547754 [TBL] [Abstract][Full Text] [Related]
7. β-galactosidase instructed in situ self-assembly fluorogenic probe for prolonged and accurate imaging of ovarian tumor. Xiong S; Bian Y; An X; Liu J; Yu X; Gao X; Su D Talanta; 2025 Jan; 282():126994. PubMed ID: 39383721 [TBL] [Abstract][Full Text] [Related]
8. An NIR Fluorescence Turn-on and MRl Bimodal Probe for Concurrent Real-time in vivo Sensing and Labeling of β-Galactosidase. Yu Q; Zhang L; Jiang M; Xiao L; Xiang Y; Wang R; Liu Z; Zhou R; Yang M; Li C; Liu M; Zhou X; Chen S Angew Chem Int Ed Engl; 2023 Nov; 62(46):e202313137. PubMed ID: 37766426 [TBL] [Abstract][Full Text] [Related]
9. An enzyme-activatable probe liberating AIEgens: on-site sensing and long-term tracking of β-galactosidase in ovarian cancer cells. Gu K; Qiu W; Guo Z; Yan C; Zhu S; Yao D; Shi P; Tian H; Zhu WH Chem Sci; 2019 Jan; 10(2):398-405. PubMed ID: 30746088 [TBL] [Abstract][Full Text] [Related]
10. Rational design of near-infrared ratiometric fluorescent probes for real-time tracking of β-galactosidase in vivo. Chen S; Liu M; Zi Y; He J; Wang L; Wu Y; Hou S; Wu W Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 285():121879. PubMed ID: 36122464 [TBL] [Abstract][Full Text] [Related]
11. A near-infrared fluorescent probe for the ratiometric detection and living cell imaging of β-galactosidase. Zhang X; Chen X; Zhang Y; Liu K; Shen H; Zheng E; Huang X; Hou S; Ma X Anal Bioanal Chem; 2019 Dec; 411(30):7957-7966. PubMed ID: 31732786 [TBL] [Abstract][Full Text] [Related]
12. Imaging of ovarian cancers using enzyme activatable probes with second near-infrared window emission. Chen JA; Pan H; Wang Z; Gao J; Tan J; Ouyang Z; Guo W; Gu X Chem Commun (Camb); 2020 Mar; 56(18):2731-2734. PubMed ID: 32022000 [TBL] [Abstract][Full Text] [Related]
13. Enzyme-activatable fluorescent probes for β-galactosidase: from design to biological applications. Yao Y; Zhang Y; Yan C; Zhu WH; Guo Z Chem Sci; 2021 Jul; 12(29):9885-9894. PubMed ID: 34349961 [TBL] [Abstract][Full Text] [Related]
14. First-generation species-selective chemical probes for fluorescence imaging of human senescence-associated β-galactosidase. Li X; Qiu W; Li J; Chen X; Hu Y; Gao Y; Shi D; Li X; Lin H; Hu Z; Dong G; Sheng C; Jiang B; Xia C; Kim CY; Guo Y; Li J Chem Sci; 2020 Jun; 11(28):7292-7301. PubMed ID: 34123013 [TBL] [Abstract][Full Text] [Related]
15. Visualization of endogenous β-galactosidase activity in living cells and zebrafish with a turn-on near-infrared fluorescent probe. Pang X; Li Y; Zhou Z; Lu Q; Xie R; Wu C; Zhang Y; Li H Talanta; 2020 Sep; 217():121098. PubMed ID: 32498839 [TBL] [Abstract][Full Text] [Related]
16. In vivo imaging of tumour xenografts with an antibody targeting the potassium channel K Napp J; Pardo LA; Hartung F; Tietze LF; Stühmer W; Alves F Eur Biophys J; 2016 Oct; 45(7):721-733. PubMed ID: 27444284 [TBL] [Abstract][Full Text] [Related]
17. A near-infrared fluorescent probe for monitoring and imaging of β-galactosidase in living cells. Wu C; Ni Z; Li P; Li Y; Pang X; Xie R; Zhou Z; Li H; Zhang Y Talanta; 2020 Nov; 219():121307. PubMed ID: 32887048 [TBL] [Abstract][Full Text] [Related]
18. β-Galactosidase-activated near-infrared AIEgen for ovarian cancer imaging in vivo. Xu L; Gao H; Deng Y; Liu X; Zhan W; Sun X; Xu JJ; Liang G Biosens Bioelectron; 2024 Jul; 255():116207. PubMed ID: 38554575 [TBL] [Abstract][Full Text] [Related]
19. Visualize intracellular β-galactosidase using an asymmetric near-infrared fluorescent probe with a large Stokes shift. Chen S; Ma X; Wang H; Wang L; Wu Y; Wang Y; Li Y; Fan W; Niu C; Hou S Anal Chim Acta; 2023 Sep; 1272():341482. PubMed ID: 37355329 [TBL] [Abstract][Full Text] [Related]
20. Design, synthesis and biological evaluation of novel dual-targeting fluorescent probes for detection of Fe Wang Y; Liu F; Yi Q; Wang M; Wang J Talanta; 2022 Jun; 243():123362. PubMed ID: 35276499 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]