These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 38756792)

  • 41. Recyclable three-dimensional Ag nanoparticle-decorated TiO2 nanorod arrays for surface-enhanced Raman scattering.
    Fang H; Zhang CX; Liu L; Zhao YM; Xu HJ
    Biosens Bioelectron; 2015 Feb; 64():434-41. PubMed ID: 25282397
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Semiconductor-based surface enhanced Raman scattering (SERS): from active materials to performance improvement.
    Wang X; Zhang E; Shi H; Tao Y; Ren X
    Analyst; 2022 Mar; 147(7):1257-1272. PubMed ID: 35253817
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Semiconductor SERS of diamond.
    Gao Y; Gao N; Li H; Yuan X; Wang Q; Cheng S; Liu J
    Nanoscale; 2018 Aug; 10(33):15788-15792. PubMed ID: 30095838
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dual platform based sandwich assay surface-enhanced Raman scattering DNA biosensor for the sensitive detection of food adulteration.
    Khalil I; Yehye WA; Muhd Julkapli N; Sina AA; Rahmati S; Basirun WJ; Seyfoddin A
    Analyst; 2020 Feb; 145(4):1414-1426. PubMed ID: 31845928
    [TBL] [Abstract][Full Text] [Related]  

  • 45. SERS Activity of Semiconductors: Crystalline and Amorphous Nanomaterials.
    Wang X; Guo L
    Angew Chem Int Ed Engl; 2020 Mar; 59(11):4231-4239. PubMed ID: 31733023
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Surface-enhanced Raman scattering from an electromagnetic induced transparency substrate for the determination of hepatocellular carcinoma.
    Ren S; Zhao Y; Wang S; Chen Z; Xu Y; Mo Z; Wang X; Shen B; Qu J; Hu R; Liu L
    Opt Express; 2022 Apr; 30(8):12387-12396. PubMed ID: 35472875
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metal-Organic Frameworks as Surface Enhanced Raman Scattering Substrates with High Tailorability.
    Sun H; Cong S; Zheng Z; Wang Z; Chen Z; Zhao Z
    J Am Chem Soc; 2019 Jan; 141(2):870-878. PubMed ID: 30566339
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular engineering of organic semiconductors enables noble metal-comparable SERS enhancement and sensitivity.
    Demirel G; Gieseking RLM; Ozdemir R; Kahmann S; Loi MA; Schatz GC; Facchetti A; Usta H
    Nat Commun; 2019 Dec; 10(1):5502. PubMed ID: 31796731
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Constructing the Mo
    Lai K; Yuan K; Ye Q; Chen A; Chen D; Chen D; Gu C
    Biosensors (Basel); 2022 Jan; 12(2):. PubMed ID: 35200312
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electric Field-Induced Chemical Surface-Enhanced Raman Spectroscopy Enhancement from Aligned Peptide Nanotube-Graphene Oxide Templates for Universal Trace Detection of Biomolecules.
    Almohammed S; Zhang F; Rodriguez BJ; Rice JH
    J Phys Chem Lett; 2019 Apr; 10(8):1878-1887. PubMed ID: 30925050
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Study of Chemical Enhancement Mechanism in Non-plasmonic Surface Enhanced Raman Spectroscopy (SERS).
    Kim J; Jang Y; Kim NJ; Kim H; Yi GC; Shin Y; Kim MH; Yoon S
    Front Chem; 2019; 7():582. PubMed ID: 31482089
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Semiconductor SERS enhancement enabled by oxygen incorporation.
    Zheng Z; Cong S; Gong W; Xuan J; Li G; Lu W; Geng F; Zhao Z
    Nat Commun; 2017 Dec; 8(1):1993. PubMed ID: 29222510
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhanced Raman scattering based on a ZnO/Ag nanostructured substrate: an in-depth study of the SERS mechanism.
    Tran TT; Vu XH; Ngo TL; Pham TTH; Nguyen DD; Nguyen VD
    Phys Chem Chem Phys; 2023 Jun; 25(23):15941-15952. PubMed ID: 37261379
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantum Effects Enter Semiconductor-Based SERS: Multiresonant MoO
    Song G; Sun H; Chen J; Chen Z; Liu B; Liu Z; Cong S; Zhao Z
    Anal Chem; 2022 Mar; 94(12):5048-5054. PubMed ID: 35297614
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Plasmonic Spherical Nanoparticles Coupled with Titania Nanotube Arrays Prepared by Anodization as Substrates for Surface-Enhanced Raman Spectroscopy Applications: A Review.
    Jimenez-Cisneros J; Galindo-Lazo JP; Mendez-Rojas MA; Campos-Delgado JR; Cerro-Lopez M
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946522
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes.
    Lee JH; You MH; Kim GH; Nam JM
    Nano Lett; 2014 Nov; 14(11):6217-25. PubMed ID: 25275930
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Silicon Microchannel-Driven Raman Scattering Enhancement to Improve Gold Nanorod Functions as a SERS Substrate toward Single-Molecule Detection.
    Bär J; de Barros A; de Camargo DHS; Pereira MP; Merces L; Shimizu FM; Sigoli FA; Bufon CCB; Mazali IO
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36482-36491. PubMed ID: 34286952
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimized electromagnetic enhancement and charge transfer in MXene/Au/Cu
    Zhao YX; Zheng ZX; Zhang LS; Feng JR; Ma L; Ding SJ
    Phys Chem Chem Phys; 2023 Jun; 25(22):15209-15218. PubMed ID: 37232126
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Plasma-Enabled Amorphous TiO
    Filippin N; Castillo-Seoane J; López-Santos MC; Rojas CT; Ostrikov K; Barranco A; Sánchez-Valencia JR; Borrás A
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):50721-50733. PubMed ID: 33112589
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Preparation and SERS applications of Ta
    Mingjin L; Cheng S; Du X; Li J; Peng Q; Zhao C; Wang Y; Xiu X
    Opt Express; 2023 Nov; 31(23):38699-38714. PubMed ID: 38017968
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.