These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 38756792)

  • 61. Preparation and SERS applications of Ta
    Mingjin L; Cheng S; Du X; Li J; Peng Q; Zhao C; Wang Y; Xiu X
    Opt Express; 2023 Nov; 31(23):38699-38714. PubMed ID: 38017968
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Mixed valence Ce-doped TiO
    Li J; Zhang H; Yu D; Wang W; Song W; Yang L; Jiang X; Zhao B
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 281():121643. PubMed ID: 35863183
    [TBL] [Abstract][Full Text] [Related]  

  • 63. [Surface-Enhanced Raman Scattering Study on Photocatalysis of PATP When Adsorbed on Ag/TiO2 Nanotubes].
    Zhong XL; Han XX; Ruan WD; Yang XW; Zhong XL; Han XX; Ruan WD; Yang XW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jun; 36(6):1740-4. PubMed ID: 30052383
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Si nano-cavity enabled surface-enhanced Raman scattering signal amplification.
    Chen J; Tang P; Liu G; Yi Z; Liu X; Pan P; Liu ZQ
    Nanotechnology; 2019 Nov; 30(46):465204. PubMed ID: 31300613
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Monitoring the charge-transfer process in a Nd-doped semiconductor based on photoluminescence and SERS technology.
    Yang S; Yao J; Quan Y; Hu M; Su R; Gao M; Han D; Yang J
    Light Sci Appl; 2020; 9():117. PubMed ID: 32685138
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Lighting up the Raman signal of molecules in the vicinity of graphene related materials.
    Ling X; Huang S; Deng S; Mao N; Kong J; Dresselhaus MS; Zhang J
    Acc Chem Res; 2015 Jul; 48(7):1862-70. PubMed ID: 26056861
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Highly Sensitive, Uniform, and Reusable Surface-Enhanced Raman Scattering Substrate with TiO₂ Interlayer between Ag Nanoparticles and Reduced Graphene Oxide.
    Hsu KC; Chen DH
    ACS Appl Mater Interfaces; 2015 Dec; 7(49):27571-9. PubMed ID: 26587760
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Metal-semiconductor heterostructures for surface-enhanced Raman scattering: synergistic contribution of plasmons and charge transfer.
    Liu Y; Ma H; Han XX; Zhao B
    Mater Horiz; 2021 Feb; 8(2):370-382. PubMed ID: 34821260
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Theoretical and Experimental Studies of Ti
    Peng Y; Cai P; Yang L; Liu Y; Zhu L; Zhang Q; Liu J; Huang Z; Yang Y
    ACS Omega; 2020 Oct; 5(41):26486-26496. PubMed ID: 33110976
    [TBL] [Abstract][Full Text] [Related]  

  • 70. SERS enhancement induced by the Se vacancy defects in ultra-thin hybrid phase SnSe
    Chen C; Zhang W; Duan P; Liu W; Shafi M; Hu X; Zhang C; Zhang C; Man B; Liu M
    Opt Express; 2022 Oct; 30(21):37795-37814. PubMed ID: 36258361
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A Charge-Transfer-Induced Strategy for Enantioselective Discrimination by Potential-Regulated Surface-Enhanced Raman Scattering Spectroscopy.
    Wang Y; Liu Y; Ren C; Ma R; Xu Z; Zhao B
    Biosensors (Basel); 2023 Apr; 13(4):. PubMed ID: 37185546
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Surface Enhanced Raman Scattering Revealed by Interfacial Charge-Transfer Transitions.
    Cong S; Liu X; Jiang Y; Zhang W; Zhao Z
    Innovation (Camb); 2020 Nov; 1(3):100051. PubMed ID: 34557716
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Surface- and Tip-Enhanced Raman Scattering by CdSe Nanocrystals on Plasmonic Substrates.
    Milekhin IA; Milekhin AG; Zahn DRT
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35808032
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Si/TiO
    Cai J; Wang Z; Jia S; Feng Z; Ren Y; Lin L; Chen G; Zheng Z
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13703-13712. PubMed ID: 35261235
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Study of charge transfer effect in Surface-Enhanced Raman scattering (SERS) by using Antimony-doped tin oxide (ATO) nanoparticles as substrates with tunable optical band gaps and free charge carrier densities.
    Zhang M; Wang Y; Ma Y; Wang X; Zhao B; Ruan W
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 264():120288. PubMed ID: 34455383
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Phosphonium-Based Ionic Liquid Significantly Enhances SERS of Cytochrome
    Dong Y; Gong M; Shah FU; Laaksonen A; An R; Ji X
    ACS Appl Mater Interfaces; 2022 Jun; 14(23):27456-65. PubMed ID: 35642388
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Enhancing charge transfer in a W
    Tan L; Yue S; Lou Y; Zhu JJ
    Analyst; 2023 Dec; 149(1):180-187. PubMed ID: 38009267
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Manipulating Hot-Electron Injection in Metal Oxide Heterojunction Array for Ultrasensitive Surface-Enhanced Raman Scattering.
    Fan X; Wei P; Li G; Li M; Lan L; Hao Q; Qiu T
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51618-51627. PubMed ID: 34674528
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Band Structure Engineering within Two-Dimensional Borocarbonitride Nanosheets for Surface-Enhanced Raman Scattering.
    Liang C; Lu ZA; Zheng M; Chen M; Zhang Y; Zhang B; Zhang J; Xu P
    Nano Lett; 2022 Aug; 22(16):6590-6598. PubMed ID: 35969868
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Dual-Scattering Near-Field Microscope for Correlative Nanoimaging of SERS and Electromagnetic Hotspots.
    Kusch P; Mastel S; Mueller NS; Morquillas Azpiazu N; Heeg S; Gorbachev R; Schedin F; Hübner U; Pascual JI; Reich S; Hillenbrand R
    Nano Lett; 2017 Apr; 17(4):2667-2673. PubMed ID: 28323430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.