These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38756915)

  • 1. Feedback stabilization of probabilistic finite state machines based on deep Q-network.
    Tian H; Su X; Hou Y
    Front Comput Neurosci; 2024; 18():1385047. PubMed ID: 38756915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constrained Deep Q-Learning Gradually Approaching Ordinary Q-Learning.
    Ohnishi S; Uchibe E; Yamaguchi Y; Nakanishi K; Yasui Y; Ishii S
    Front Neurorobot; 2019; 13():103. PubMed ID: 31920613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slicing Resource Allocation Based on Dueling DQN for eMBB and URLLC Hybrid Services in Heterogeneous Integrated Networks.
    Chen G; Shao R; Shen F; Zeng Q
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Reinforcement Learning Approach for Flexible Job Shop Scheduling Problem With Crane Transportation and Setup Times.
    Du Y; Li J; Li C; Duan P
    IEEE Trans Neural Netw Learn Syst; 2024 Apr; 35(4):5695-5709. PubMed ID: 36215382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards Deep Q-Network Based Resource Allocation in Industrial Internet of Things.
    Liang F; Yu W; Liu X; Griffith D; Golmie N
    IEEE Internet Things J; 2022 Jun; 9(12):. PubMed ID: 38486943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-robot task allocation in e-commerce RMFS based on deep reinforcement learning.
    Yuan R; Dou J; Li J; Wang W; Jiang Y
    Math Biosci Eng; 2023 Jan; 20(2):1903-1918. PubMed ID: 36899514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Teleconsultation dynamic scheduling with a deep reinforcement learning approach.
    Chen W; Li J
    Artif Intell Med; 2024 Mar; 149():102806. PubMed ID: 38462294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Minibatch Recursive Least Squares Q-Learning.
    Zhang C; Song Q; Meng Z
    Comput Intell Neurosci; 2021; 2021():5370281. PubMed ID: 34659393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two Tier Slicing Resource Allocation Algorithm Based on Deep Reinforcement Learning and Joint Bidding in Wireless Access Networks.
    Chen G; Zhang X; Shen F; Zeng Q
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IoT-Based Reinforcement Learning Using Probabilistic Model for Determining Extensive Exploration through Computational Intelligence for Next-Generation Techniques.
    Tiwari PK; Singh P; Rajagopal NK; Deepa K; Gulavani S; Verma A; Kumar YP
    Comput Intell Neurosci; 2023; 2023():5113417. PubMed ID: 37854640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FSPBO-DQN: SeGAN based segmentation and Fractional Student Psychology Optimization enabled Deep Q Network for skin cancer detection in IoT applications.
    Kumar KS; Suganthi N; Muppidi S; Kumar BS
    Artif Intell Med; 2022 Jul; 129():102299. PubMed ID: 35659386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intelligent Task Dispatching and Scheduling Using a Deep Q-Network in a Cluster Edge Computing System.
    Youn J; Han YH
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Qualitative Measurements of Policy Discrepancy for Return-Based Deep Q-Network.
    Meng W; Zheng Q; Yang L; Li P; Pan G
    IEEE Trans Neural Netw Learn Syst; 2020 Oct; 31(10):4374-4380. PubMed ID: 31765320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of Hand Gestures Based on EMG Signals with Deep and Double-Deep Q-Networks.
    Valdivieso Caraguay ÁL; Vásconez JP; Barona López LI; Benalcázar ME
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Approach to the Job Shop Scheduling Problem Based on the Deep Q-Network in a Cooperative Multi-Access Edge Computing Ecosystem.
    Moon J; Yang M; Jeong J
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep reinforcement learning for automated radiation adaptation in lung cancer.
    Tseng HH; Luo Y; Cui S; Chien JT; Ten Haken RK; Naqa IE
    Med Phys; 2017 Dec; 44(12):6690-6705. PubMed ID: 29034482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. D2D-Assisted Multi-User Cooperative Partial Offloading in MEC Based on Deep Reinforcement Learning.
    Guan X; Lv T; Lin Z; Huang P; Zeng J
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Edge Server Placement Method Based on Reinforcement Learning.
    Luo F; Zheng S; Ding W; Fuentes J; Li Y
    Entropy (Basel); 2022 Feb; 24(3):. PubMed ID: 35327828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sampling Efficient Deep Reinforcement Learning Through Preference-Guided Stochastic Exploration.
    Huang W; Zhang C; Wu J; He X; Zhang J; Lv C
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; PP():. PubMed ID: 37788189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Kind of Joint Routing and Resource Allocation Scheme Based on Prioritized Memories-Deep Q Network for Cognitive Radio Ad Hoc Networks.
    Du Y; Zhang F; Xue L
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30004424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.