BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 38757067)

  • 1. Impact of an AI software on the diagnostic performance and reading time for the detection of cerebral aneurysms on time of flight MR-angiography.
    Lehnen NC; Schievelkamp AH; Gronemann C; Haase R; Krause I; Gansen M; Fleckenstein T; Dorn F; Radbruch A; Paech D
    Neuroradiology; 2024 Jul; 66(7):1153-1160. PubMed ID: 38619571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the Performance of an Artificial Intelligence (AI) Algorithm in Detecting Thoracic Pathologies on Chest Radiographs.
    Bettinger H; Lenczner G; Guigui J; Rotenberg L; Zerbib E; Attia A; Vidal J; Beaumel P
    Diagnostics (Basel); 2024 Jun; 14(11):. PubMed ID: 38893709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AI Is Just Another Tool.
    Hewitt SM
    J Histochem Cytochem; 2023 Oct; 71(10):527-528. PubMed ID: 37740707
    [No Abstract]   [Full Text] [Related]  

  • 4. Improving traumatic fracture detection on radiographs with artificial intelligence support: a multi-reader study.
    Bachmann R; Gunes G; Hangaard S; Nexmann A; Lisouski P; Boesen M; Lundemann M; Baginski SG
    BJR Open; 2024 Jan; 6(1):tzae011. PubMed ID: 38757067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of an AI Aid in Detection of Adult Appendicular Skeletal Fractures by Emergency Physicians and Radiologists: A Multicenter Cross-sectional Diagnostic Study.
    Duron L; Ducarouge A; Gillibert A; Lainé J; Allouche C; Cherel N; Zhang Z; Nitche N; Lacave E; Pourchot A; Felter A; Lassalle L; Regnard NE; Feydy A
    Radiology; 2021 Jul; 300(1):120-129. PubMed ID: 33944629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving Radiographic Fracture Recognition Performance and Efficiency Using Artificial Intelligence.
    Guermazi A; Tannoury C; Kompel AJ; Murakami AM; Ducarouge A; Gillibert A; Li X; Tournier A; Lahoud Y; Jarraya M; Lacave E; Rahimi H; Pourchot A; Parisien RL; Merritt AC; Comeau D; Regnard NE; Hayashi D
    Radiology; 2022 Mar; 302(3):627-636. PubMed ID: 34931859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AI-based improvement in lung cancer detection on chest radiographs: results of a multi-reader study in NLST dataset.
    Yoo H; Lee SH; Arru CD; Doda Khera R; Singh R; Siebert S; Kim D; Lee Y; Park JH; Eom HJ; Digumarthy SR; Kalra MK
    Eur Radiol; 2021 Dec; 31(12):9664-9674. PubMed ID: 34089072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the Potential of a Deep Learning Tool to Improve Fracture Detection by Radiologists and Emergency Physicians on Extremity Radiographs.
    Fu T; Viswanathan V; Attia A; Zerbib-Attal E; Kosaraju V; Barger R; Vidal J; Bittencourt LK; Faraji N
    Acad Radiol; 2024 May; 31(5):1989-1999. PubMed ID: 37993303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinician Trust in Artificial Intelligence: What is Known and How Trust Can Be Facilitated.
    Rojas JC; Teran M; Umscheid CA
    Crit Care Clin; 2023 Oct; 39(4):769-782. PubMed ID: 37704339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial intelligence and clinical decision support: clinicians' perspectives on trust, trustworthiness, and liability.
    Jones C; Thornton J; Wyatt JC
    Med Law Rev; 2023 Nov; 31(4):501-520. PubMed ID: 37218368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Prospective Approach to Integration of AI Fracture Detection Software in Radiographs into Clinical Workflow.
    Oppenheimer J; Lüken S; Hamm B; Niehues SM
    Life (Basel); 2023 Jan; 13(1):. PubMed ID: 36676172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Learning Assistance Closes the Accuracy Gap in Fracture Detection Across Clinician Types.
    Anderson PG; Baum GL; Keathley N; Sicular S; Venkatesh S; Sharma A; Daluiski A; Potter H; Hotchkiss R; Lindsey RV; Jones RM
    Clin Orthop Relat Res; 2023 Mar; 481(3):580-588. PubMed ID: 36083847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diagnostic accuracy and potential covariates of artificial intelligence for diagnosing orthopedic fractures: a systematic literature review and meta-analysis.
    Zhang X; Yang Y; Shen YW; Zhang KR; Jiang ZK; Ma LT; Ding C; Wang BY; Meng Y; Liu H
    Eur Radiol; 2022 Oct; 32(10):7196-7216. PubMed ID: 35754091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated detection of acute appendicular skeletal fractures in pediatric patients using deep learning.
    Hayashi D; Kompel AJ; Ventre J; Ducarouge A; Nguyen T; Regnard NE; Guermazi A
    Skeletal Radiol; 2022 Nov; 51(11):2129-2139. PubMed ID: 35522332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial Intelligence in Fracture Detection: A Systematic Review and Meta-Analysis.
    Kuo RYL; Harrison C; Curran TA; Jones B; Freethy A; Cussons D; Stewart M; Collins GS; Furniss D
    Radiology; 2022 Jul; 304(1):50-62. PubMed ID: 35348381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pediatric Musculoskeletal Radiographs: Anatomy and Fractures Prone to Diagnostic Error Among Emergency Physicians.
    Li W; Stimec J; Camp M; Pusic M; Herman J; Boutis K
    J Emerg Med; 2022 Apr; 62(4):524-533. PubMed ID: 35282940
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.