These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38757172)

  • 21. A flavin binding cryptochrome photoreceptor responds to both blue and red light in Chlamydomonas reinhardtii.
    Beel B; Prager K; Spexard M; Sasso S; Weiss D; Müller N; Heinnickel M; Dewez D; Ikoma D; Grossman AR; Kottke T; Mittag M
    Plant Cell; 2012 Jul; 24(7):2992-3008. PubMed ID: 22773746
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Response of the Sensory animal-like cryptochrome aCRY to blue and red light as revealed by infrared difference spectroscopy.
    Spexard M; Thöing C; Beel B; Mittag M; Kottke T
    Biochemistry; 2014 Feb; 53(6):1041-50. PubMed ID: 24467183
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Light-induced conformational changes in full-length Arabidopsis thaliana cryptochrome.
    Kondoh M; Shiraishi C; Müller P; Ahmad M; Hitomi K; Getzoff ED; Terazima M
    J Mol Biol; 2011 Oct; 413(1):128-37. PubMed ID: 21875594
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A deazariboflavin chromophore kinetically stabilizes reduced FAD state in a bifunctional cryptochrome.
    Hosokawa Y; Morita H; Nakamura M; Yamamoto J
    Sci Rep; 2023 Oct; 13(1):16682. PubMed ID: 37794070
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ATP boosts lit state formation and activity of Arabidopsis cryptochrome 2.
    Eckel M; Steinchen W; Batschauer A
    Plant J; 2018 Oct; 96(2):389-403. PubMed ID: 30044014
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impacts of Cys392, Asp393, and ATP on the FAD Binding, Photoreduction, and the Stability of the Radical State of Chlamydomonas reinhardtii Cryptochrome.
    Xu L; Wen B; Shao W; Yao P; Zheng W; Zhou Z; Zhang Y; Zhu G
    Chembiochem; 2019 Apr; 20(7):940-948. PubMed ID: 30548754
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular Bases of Signaling Processes Regulated by Cryptochrome Sensory Photoreceptors in Plants.
    Fraikin GY; Belenikina NS; Rubin AB
    Biochemistry (Mosc); 2023 Jun; 88(6):770-782. PubMed ID: 37748873
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Blue light induces radical formation and autophosphorylation in the light-sensitive domain of Chlamydomonas cryptochrome.
    Immeln D; Schlesinger R; Heberle J; Kottke T
    J Biol Chem; 2007 Jul; 282(30):21720-8. PubMed ID: 17548357
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Arabidopsis cryptochrome 2 I404F mutant is hypersensitive and shows flavin reduction even in the absence of light.
    Araguirang GE; Niemann N; Kiontke S; Eckel M; Dionisio-Sese ML; Batschauer A
    Planta; 2019 Dec; 251(1):33. PubMed ID: 31832774
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hyperactivity of the
    Orth C; Niemann N; Hennig L; Essen LO; Batschauer A
    J Biol Chem; 2017 Aug; 292(31):12906-12920. PubMed ID: 28634231
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photoreaction Dynamics of Full-Length Phototropin from
    Nakasone Y; Ohshima M; Okajima K; Tokutomi S; Terazima M
    J Phys Chem B; 2019 Dec; 123(51):10939-10950. PubMed ID: 31790257
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of a Chlamydomonas reinhardtii gene encoding a protein of the DNA photolyase/blue light photoreceptor family.
    Small GD; Min B; Lefebvre PA
    Plant Mol Biol; 1995 Jun; 28(3):443-54. PubMed ID: 7632915
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plant Cryptochromes Illuminated: A Spectroscopic Perspective on the Mechanism.
    Goett-Zink L; Kottke T
    Front Chem; 2021; 9():780199. PubMed ID: 34900940
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arabidopsis cryptochrome 2 (CRY2) functions by the photoactivation mechanism distinct from the tryptophan (trp) triad-dependent photoreduction.
    Li X; Wang Q; Yu X; Liu H; Yang H; Zhao C; Liu X; Tan C; Klejnot J; Zhong D; Lin C
    Proc Natl Acad Sci U S A; 2011 Dec; 108(51):20844-9. PubMed ID: 22139370
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The CPH1 gene of Chlamydomonas reinhardtii encodes two forms of cryptochrome whose levels are controlled by light-induced proteolysis.
    Reisdorph NA; Small GD
    Plant Physiol; 2004 Apr; 134(4):1546-54. PubMed ID: 15064387
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Origin of light-induced spin-correlated radical pairs in cryptochrome.
    Weber S; Biskup T; Okafuji A; Marino AR; Berthold T; Link G; Hitomi K; Getzoff ED; Schleicher E; Norris JR
    J Phys Chem B; 2010 Nov; 114(45):14745-54. PubMed ID: 20684534
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Cryptochrome Blue Light Receptors.
    Yu X; Liu H; Klejnot J; Lin C
    Arabidopsis Book; 2010 Sep; 8():e0135. PubMed ID: 21841916
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chlamydomonas reinhardtii strain CC-124 is highly sensitive to blue light in addition to green and red light in resetting its circadian clock, with the blue-light photoreceptor plant cryptochrome likely acting as negative modulator.
    Forbes-Stovall J; Howton J; Young M; Davis G; Chandler T; Kessler B; Rinehart CA; Jacobshagen S
    Plant Physiol Biochem; 2014 Feb; 75():14-23. PubMed ID: 24361506
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cellular metabolites modulate in vivo signaling of Arabidopsis cryptochrome-1.
    El-Esawi M; Glascoe A; Engle D; Ritz T; Link J; Ahmad M
    Plant Signal Behav; 2015; 10(9):e1063758. PubMed ID: 26313597
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The second chromophore in Drosophila photolyase/cryptochrome family photoreceptors.
    Selby CP; Sancar A
    Biochemistry; 2012 Jan; 51(1):167-71. PubMed ID: 22175817
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.