BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38757458)

  • 1. From molecules to morphology: How food supply influences the larvae of sea urchins across all levels of biological organization.
    Somero GN
    Mol Ecol; 2024 Jun; 33(12):e17384. PubMed ID: 38757458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrative biological analyses of responses to food deprivation reveal resilience mechanisms in sea urchin larvae.
    Li N; Griffith AW; Manahan DT
    Mol Ecol; 2024 Jun; 33(12):e17120. PubMed ID: 37646910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulation of developing juvenile structures in purple sea urchins (Strongylocentrotus purpuratus) by morpholino injection into late stage larvae.
    Heyland A; Hodin J; Bishop C
    PLoS One; 2014; 9(12):e113866. PubMed ID: 25436992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A detailed staging scheme for late larval development in Strongylocentrotus purpuratus focused on readily-visible juvenile structures within the rudiment.
    Heyland A; Hodin J
    BMC Dev Biol; 2014 May; 14():22. PubMed ID: 24886415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary and experimental change in egg volume, heterochrony of larval body and juvenile rudiment, and evolutionary reversibility in pluteus form.
    Bertram DF; Phillips NE; Strathmann RR
    Evol Dev; 2009; 11(6):728-39. PubMed ID: 19878294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of environmentally relevant concentrations of Zn, Cd and Ni and their binary mixtures on metal uptake, bioaccumulation and development in larvae of the purple sea urchin Strongylocentrotus purpuratus.
    Nogueira LS; Domingos-Moreira FXV; Klein RD; Bianchini A; Wood CM
    Aquat Toxicol; 2021 Jan; 230():105709. PubMed ID: 33296850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic variation underlies plastic responses to global change drivers in the purple sea urchin,
    Strader ME; Wolak ME; Simon OM; Hofmann GE
    Proc Biol Sci; 2022 Aug; 289(1981):20221249. PubMed ID: 36043281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature and CO(2) additively regulate physiology, morphology and genomic responses of larval sea urchins, Strongylocentrotus purpuratus.
    Padilla-Gamiño JL; Kelly MW; Evans TG; Hofmann GE
    Proc Biol Sci; 2013 May; 280(1759):20130155. PubMed ID: 23536595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial Exposure Mediates Developmental Plasticity and Resistance to Lethal
    Schuh NW; Carrier TJ; Schrankel CS; Reitzel AM; Heyland A; Rast JP
    Front Immunol; 2019; 10():3014. PubMed ID: 31993052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sea urchin histamine receptor 1 regulates programmed cell death in larval Strongylocentrotus purpuratus.
    Lutek K; Dhaliwal RS; Van Raay TJ; Heyland A
    Sci Rep; 2018 Mar; 8(1):4002. PubMed ID: 29507306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-cell RNA sequencing of the
    Paganos P; Voronov D; Musser JM; Arendt D; Arnone MI
    Elife; 2021 Nov; 10():. PubMed ID: 34821556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unique Genomic and Phenotypic Responses to Extreme and Variable pH Conditions in Purple Urchin Larvae.
    Garrett AD; Brennan RS; Steinhart AL; Pelletier AM; Pespeni MH
    Integr Comp Biol; 2020 Aug; 60(2):318-331. PubMed ID: 32544238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adhesive plasticity among populations of purple sea urchin (
    Stark AY; Narvaez CA; Russell MP
    J Exp Biol; 2020 Aug; 223(Pt 15):. PubMed ID: 32587066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental ocean acidification alters the allocation of metabolic energy.
    Pan TC; Applebaum SL; Manahan DT
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4696-701. PubMed ID: 25825763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ocean acidification research in the 'post-genomic' era: Roadmaps from the purple sea urchin Strongylocentrotus purpuratus.
    Evans TG; Padilla-Gamiño JL; Kelly MW; Pespeni MH; Chan F; Menge BA; Gaylord B; Hill TM; Russell AD; Palumbi SR; Sanford E; Hofmann GE
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Jul; 185():33-42. PubMed ID: 25773301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation in purple sea urchin (
    Smith JG; Garcia SC
    PeerJ; 2021; 9():e11352. PubMed ID: 33987021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the genes encoding candidate septate junction components expressed during early development of the sea urchin, Strongylocentrotus purpuratus, and evidence of a role for Mesh in the formation of the gut barrier.
    Jonusaite S; Oulhen N; Izumi Y; Furuse M; Yamamoto T; Sakamoto N; Wessel G; Heyland A
    Dev Biol; 2023 Mar; 495():21-34. PubMed ID: 36587799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tipping points of gastric pH regulation and energetics in the sea urchin larva exposed to CO
    Lee HG; Stumpp M; Yan JJ; Tseng YC; Heinzel S; Hu MY
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Aug; 234():87-97. PubMed ID: 31022521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular and Cellular Characterization of the TH Pathway in the Sea Urchin
    Cocurullo M; Paganos P; Wood NJ; Arnone MI; Oliveri P
    Cells; 2023 Jan; 12(2):. PubMed ID: 36672206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thyroid hormone membrane receptor binding and transcriptional regulation in the sea urchin
    Taylor E; Wynen H; Heyland A
    Front Endocrinol (Lausanne); 2023; 14():1195733. PubMed ID: 37305042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.