These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 38757628)

  • 1. A combination of radiomic features, clinic characteristics, and serum tumor biomarkers to predict the possibility of the micropapillary/solid component of lung adenocarcinoma.
    Xing X; Li L; Sun M; Zhu X; Feng Y
    Ther Adv Respir Dis; 2024; 18():17534666241249168. PubMed ID: 38757628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of solid and micropapillary components in lung invasive adenocarcinoma: radiomics analysis from high-spatial-resolution CT data with 1024 matrix.
    Ninomiya K; Yanagawa M; Tsubamoto M; Sato Y; Suzuki Y; Hata A; Kikuchi N; Yoshida Y; Yamagata K; Doi S; Ogawa R; Tokuda Y; Kido S; Tomiyama N
    Jpn J Radiol; 2024 Jun; 42(6):590-598. PubMed ID: 38413550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrative nomogram of intratumoral, peritumoral, and lymph node radiomic features for prediction of lymph node metastasis in cT1N0M0 lung adenocarcinomas.
    Das SK; Fang KW; Xu L; Li B; Zhang X; Yang HF
    Sci Rep; 2021 May; 11(1):10829. PubMed ID: 34031529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nomogram using intratumoral and peritumoral radiomics for the preoperative prediction of visceral pleural invasion in clinical stage IA lung adenocarcinoma.
    Wang Y; Lyu D; Hu S; Ma Y; Duan S; Geng Y; Zhou T; Tu W; Xiao Y; Fan L; Liu S
    J Cardiothorac Surg; 2024 May; 19(1):307. PubMed ID: 38822379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study to evaluate CT-based semantic and radiomic features in preoperative diagnosis of invasive pulmonary adenocarcinomas manifesting as subsolid nodules.
    Wu YJ; Liu YC; Liao CY; Tang EK; Wu FZ
    Sci Rep; 2021 Jan; 11(1):66. PubMed ID: 33462251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiomics for lung adenocarcinoma manifesting as pure ground-glass nodules: invasive prediction.
    Sun Y; Li C; Jin L; Gao P; Zhao W; Ma W; Tan M; Wu W; Duan S; Shan Y; Li M
    Eur Radiol; 2020 Jul; 30(7):3650-3659. PubMed ID: 32162003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and validation of a preoperative CT‑based radiomics nomogram to differentiate tuberculosis granulomas from lung adenocarcinomas: an external validation study.
    Yang L; Jiang Z; Tong J; Li N; Dong Q; Wang K
    BMC Cancer; 2024 Jun; 24(1):670. PubMed ID: 38824514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can peritumoral radiomics increase the efficiency of the prediction for lymph node metastasis in clinical stage T1 lung adenocarcinoma on CT?
    Wang X; Zhao X; Li Q; Xia W; Peng Z; Zhang R; Li Q; Jian J; Wang W; Tang Y; Liu S; Gao X
    Eur Radiol; 2019 Nov; 29(11):6049-6058. PubMed ID: 30887209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diagnosis of Invasive Lung Adenocarcinoma Based on Chest CT Radiomic Features of Part-Solid Pulmonary Nodules: A Multicenter Study.
    Wu G; Woodruff HC; Shen J; Refaee T; Sanduleanu S; Ibrahim A; Leijenaar RTH; Wang R; Xiong J; Bian J; Wu J; Lambin P
    Radiology; 2020 Nov; 297(2):451-458. PubMed ID: 32840472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel radiomic nomogram for predicting epidermal growth factor receptor mutation in peripheral lung adenocarcinoma.
    Lu X; Li M; Zhang H; Hua S; Meng F; Yang H; Li X; Cao D
    Phys Med Biol; 2020 Mar; 65(5):055012. PubMed ID: 31978901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feasibility of UTE-MRI-based radiomics model for prediction of histopathologic subtype of lung adenocarcinoma: in comparison with CT-based radiomics model.
    Lee S; Lee CY; Kim NY; Suh YJ; Lee HJ; Yong HS; Kim HR; Kim YJ
    Eur Radiol; 2024 May; 34(5):3422-3430. PubMed ID: 37840100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The development and validation of a radiomic nomogram for the preoperative prediction of lung adenocarcinoma.
    Liu Q; Huang Y; Chen H; Liu Y; Liang R; Zeng Q
    BMC Cancer; 2020 Jun; 20(1):533. PubMed ID: 32513144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiomics signature on CECT as a predictive factor for invasiveness of lung adenocarcinoma manifesting as subcentimeter ground glass nodules.
    Chen W; Li M; Mao D; Ge X; Wang J; Tan M; Ma W; Huang X; Lu J; Li C; Hua Y; Wu H
    Sci Rep; 2021 Feb; 11(1):3633. PubMed ID: 33574448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Combination of Radiomic Features, Imaging Characteristics, and Serum Tumor Biomarkers to Predict the Possibility of the High-Grade Subtypes of Lung Adenocarcinoma.
    Liu Y; Chang Y; Zha X; Bao J; Wu Q; Dai H; Hu C
    Acad Radiol; 2022 Dec; 29(12):1792-1801. PubMed ID: 35351366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minor components of micropapillary and solid subtypes in lung invasive adenocarcinoma (≤ 3 cm): PET/CT findings and correlations with lymph node metastasis.
    Chang C; Sun X; Zhao W; Wang R; Qian X; Lei B; Wang L; Liu L; Ruan M; Xie W; Shen J
    Radiol Med; 2020 Mar; 125(3):257-264. PubMed ID: 31823295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A CT-based radiomics nomogram for prediction of lung adenocarcinomas and granulomatous lesions in patient with solitary sub-centimeter solid nodules.
    Chen X; Feng B; Chen Y; Liu K; Li K; Duan X; Hao Y; Cui E; Liu Z; Zhang C; Long W; Liu X
    Cancer Imaging; 2020 Jul; 20(1):45. PubMed ID: 32641166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma.
    Jiang C; Luo Y; Yuan J; You S; Chen Z; Wu M; Wang G; Gong J
    Eur Radiol; 2020 Jul; 30(7):4050-4057. PubMed ID: 32112116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A clinically practical radiomics-clinical combined model based on PET/CT data and nomogram predicts EGFR mutation in lung adenocarcinoma.
    Chang C; Zhou S; Yu H; Zhao W; Ge Y; Duan S; Wang R; Qian X; Lei B; Wang L; Liu L; Ruan M; Yan H; Sun X; Xie W
    Eur Radiol; 2021 Aug; 31(8):6259-6268. PubMed ID: 33544167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a CT radiomics nomogram for preoperative prediction of Ki-67 index in pancreatic ductal adenocarcinoma: a two-center retrospective study.
    Li Q; Song Z; Li X; Zhang D; Yu J; Li Z; Huang J; Su K; Liu Q; Zhang X; Tang Z
    Eur Radiol; 2024 May; 34(5):2934-2943. PubMed ID: 37938382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Marginal radiomics features as imaging biomarkers for pathological invasion in lung adenocarcinoma.
    Cho HH; Lee G; Lee HY; Park H
    Eur Radiol; 2020 May; 30(5):2984-2994. PubMed ID: 31965255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.