These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38757983)

  • 1. Mitigating substrate effects of van der Waals semiconductors using perfluoropolyether self-assembled monolayers.
    Park DY; Suh HC; Bang S; Lee JC; Yoo J; Ko H; Choi SH; Kim KK; Lee SM; Lim SC; Nahm TU; Jeong MS
    Nanoscale; 2024 Jun; 16(22):10779-10788. PubMed ID: 38757983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced light-matter interaction in two-dimensional transition metal dichalcogenides.
    Huang L; Krasnok A; Alú A; Yu Y; Neshev D; Miroshnichenko AE
    Rep Prog Phys; 2022 Mar; 85(4):. PubMed ID: 34939940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of Metal and Insulator States in 2D Ferromagnetic VS
    Guo Y; Deng H; Sun X; Li X; Zhao J; Wu J; Chu W; Zhang S; Pan H; Zheng X; Wu X; Jin C; Wu C; Xie Y
    Adv Mater; 2017 Aug; 29(29):. PubMed ID: 28585239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Localized Trions in Monolayer WSe
    Chakraborty C; Qiu L; Konthasinghe K; Mukherjee A; Dhara S; Vamivakas N
    Nano Lett; 2018 May; 18(5):2859-2863. PubMed ID: 29589758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Moiré-Assisted Strain Transfer in Vertical van der Waals Heterostructures.
    Hu J; Yu L; Chen X; Lee W; Mate CM; Heinz TF
    Nano Lett; 2023 Nov; 23(21):10051-10057. PubMed ID: 37903015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition Metal Dichalcogenides (TMDCs) Heterostructures: Synthesis, Excitons and Photoelectric Properties.
    Fan J; Sun M
    Chem Rec; 2022 Jun; 22(6):e202100313. PubMed ID: 35452180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intercalation of Metal into Transition Metal Dichalcogenides in Molten Salts.
    Gao L; Li M; Fan Q; Liang K; Hu B; Huang Q
    Small; 2024 Jan; 20(1):e2304281. PubMed ID: 37667446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable Doping of Rhenium and Vanadium into Transition Metal Dichalcogenides for Two-Dimensional Electronics.
    Li S; Hong J; Gao B; Lin YC; Lim HE; Lu X; Wu J; Liu S; Tateyama Y; Sakuma Y; Tsukagoshi K; Suenaga K; Taniguchi T
    Adv Sci (Weinh); 2021 Jun; 8(11):e2004438. PubMed ID: 34105285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tungsten Oxide Mediated Quasi-van der Waals Epitaxy of WS
    Cohen A; Mohapatra PK; Hettler S; Patsha A; Narayanachari KVLV; Shekhter P; Cavin J; Rondinelli JM; Bedzyk M; Dieguez O; Arenal R; Ismach A
    ACS Nano; 2023 Mar; 17(6):5399-5411. PubMed ID: 36883970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical and optical properties of transition metal dichalcogenides on talc dielectrics.
    Nutting D; Prando GA; Severijnen M; Barcelos ID; Guo S; Christianen PCM; Zeitler U; Galvão Gobato Y; Withers F
    Nanoscale; 2021 Oct; 13(37):15853-15858. PubMed ID: 34518845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. van der Waals interaction-induced photoluminescence weakening and multilayer growth in epitaxially aligned WS
    Ji HG; Maruyama M; Aji AS; Okada S; Matsuda K; Ago H
    Phys Chem Chem Phys; 2018 Dec; 20(47):29790-29797. PubMed ID: 30465565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput dry transfer and excitonic properties of twisted bilayers based on CVD-grown transition metal dichalcogenides.
    Naito H; Makino Y; Zhang W; Ogawa T; Endo T; Sannomiya T; Kaneda M; Hashimoto K; Lim HE; Nakanishi Y; Watanabe K; Taniguchi T; Matsuda K; Miyata Y
    Nanoscale Adv; 2023 Sep; 5(18):5115-5121. PubMed ID: 37705802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical van der Waals Heterostructure Strategy to Form Stable Transition Metal Dichalcogenide Dispersions.
    Park J; Bong S; Park J; Lee E; Ju SY
    ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36286548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local dielectric function of hBN-encapsulated WS
    Ferrera M; Sharma A; Milekhin I; Pan Y; Convertino D; Pace S; Orlandini G; Peci E; Ramò L; Magnozzi M; Coletti C; Salvan G; Zahn DRT; Canepa M; Bisio F
    J Phys Condens Matter; 2023 Apr; 35(27):. PubMed ID: 36996840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation on Contact Properties of 2D van der Waals Semimetallic 1T-TiS
    Yoon H; Lee S; Seo J; Sohn I; Jun S; Hong S; Im S; Nam Y; Kim HJ; Lee Y; Chung SM; Kim H
    ACS Appl Mater Interfaces; 2024 Mar; 16(9):12095-12105. PubMed ID: 38384197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures.
    Lee JY; Shin JH; Lee GH; Lee CH
    Nanomaterials (Basel); 2016 Oct; 6(11):. PubMed ID: 28335321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsic and Extrinsic Defect-Related Excitons in TMDCs.
    Greben K; Arora S; Harats MG; Bolotin KI
    Nano Lett; 2020 Apr; 20(4):2544-2550. PubMed ID: 32191482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct and Indirect Interlayer Excitons in a van der Waals Heterostructure of hBN/WS
    Okada M; Kutana A; Kureishi Y; Kobayashi Y; Saito Y; Saito T; Watanabe K; Taniguchi T; Gupta S; Miyata Y; Yakobson BI; Shinohara H; Kitaura R
    ACS Nano; 2018 Mar; 12(3):2498-2505. PubMed ID: 29481065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors.
    Wang Y; Kim JC; Wu RJ; Martinez J; Song X; Yang J; Zhao F; Mkhoyan A; Jeong HY; Chhowalla M
    Nature; 2019 Apr; 568(7750):70-74. PubMed ID: 30918403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bridging the van der Waals Interface for Advanced Optoelectronic Devices.
    Wen Y; He P; Yao Y; Zhang Y; Cheng R; Yin L; Li N; Li J; Wang J; Wang Z; Liu C; Fang X; Jiang C; Wei Z; He J
    Adv Mater; 2020 Feb; 32(7):e1906874. PubMed ID: 31867809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.