These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 38758739)

  • 21. Assessing the convergent validity between the automated emotion recognition software Noldus FaceReader 7 and Facial Action Coding System Scoring.
    Skiendziel T; Rösch AG; Schultheiss OC
    PLoS One; 2019; 14(10):e0223905. PubMed ID: 31622426
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The promises and perils of automated facial action coding in studying children's emotions.
    Martinez AM
    Dev Psychol; 2019 Sep; 55(9):1965-1981. PubMed ID: 31464498
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The blenderFace method: video-based measurement of raw movement data during facial expressions of emotion using open-source software.
    Zinkernagel A; Alexandrowicz RW; Lischetzke T; Schmitt M
    Behav Res Methods; 2019 Apr; 51(2):747-768. PubMed ID: 30076534
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electromyographic Validation of Spontaneous Facial Mimicry Detection Using Automated Facial Action Coding.
    Hsu CT; Sato W
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005462
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Equine Facial Action Coding System for determination of pain-related facial responses in videos of horses.
    Rashid M; Silventoinen A; Gleerup KB; Andersen PH
    PLoS One; 2020; 15(11):e0231608. PubMed ID: 33141852
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Serotonin and the neural processing of facial emotions in adults with autism: an fMRI study using acute tryptophan depletion.
    Daly EM; Deeley Q; Ecker C; Craig M; Hallahan B; Murphy C; Johnston P; Spain D; Gillan N; Brammer M; Giampietro V; Lamar M; Page L; Toal F; Cleare A; Surguladze S; Murphy DG
    Arch Gen Psychiatry; 2012 Oct; 69(10):1003-13. PubMed ID: 22638012
    [TBL] [Abstract][Full Text] [Related]  

  • 27. EEG and FMRI coregistration to investigate the cortical oscillatory activities during finger movement.
    Formaggio E; Storti SF; Avesani M; Cerini R; Milanese F; Gasparini A; Acler M; Pozzi Mucelli R; Fiaschi A; Manganotti P
    Brain Topogr; 2008 Dec; 21(2):100-11. PubMed ID: 18648924
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automated recognition of spontaneous facial expression in individuals with autism spectrum disorder: parsing response variability.
    Bangerter A; Chatterjee M; Manfredonia J; Manyakov NV; Ness S; Boice MA; Skalkin A; Goodwin MS; Dawson G; Hendren R; Leventhal B; Shic F; Pandina G
    Mol Autism; 2020 May; 11(1):31. PubMed ID: 32393350
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The voluntary control of facial action units in adults.
    Gosselin P; Perron M; Beaupré M
    Emotion; 2010 Apr; 10(2):266-71. PubMed ID: 20364903
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wavelet analysis as a tool for investigating movement-related cortical oscillations in EEG-fMRI coregistration.
    Storti SF; Formaggio E; Beltramello A; Fiaschi A; Manganotti P
    Brain Topogr; 2010 Mar; 23(1):46-57. PubMed ID: 19921416
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonconscious emotional processing involves distinct neural pathways for pictures and videos.
    Faivre N; Charron S; Roux P; Lehéricy S; Kouider S
    Neuropsychologia; 2012 Dec; 50(14):3736-44. PubMed ID: 23137946
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid and automatic discrimination between facial expressions in the human brain.
    Poncet F; Baudouin JY; Dzhelyova MP; Rossion B; Leleu A
    Neuropsychologia; 2019 Jun; 129():47-55. PubMed ID: 30885642
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of Affective Multimedia Content on the Electroencephalogram and Facial Expressions.
    Siddharth S; Jung TP; Sejnowski TJ
    Sci Rep; 2019 Nov; 9(1):16295. PubMed ID: 31705031
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An EEG Database and Its Initial Benchmark Emotion Classification Performance.
    Seal A; Reddy PPN; Chaithanya P; Meghana A; Jahnavi K; Krejcar O; Hudak R
    Comput Math Methods Med; 2020; 2020():8303465. PubMed ID: 32831902
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Consistent behavioral and electrophysiological evidence for rapid perceptual discrimination among the six human basic facial expressions.
    Luo Q; Dzhelyova M
    Cogn Affect Behav Neurosci; 2020 Oct; 20(5):928-948. PubMed ID: 32918269
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of temporal inversion in the perception of realistic and morphed dynamic transitions between facial expressions.
    Korolkova OA
    Vision Res; 2018 Feb; 143():42-51. PubMed ID: 29274357
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mu desynchronization during observation and execution of facial expressions in 30-month-old children.
    Rayson H; Bonaiuto JJ; Ferrari PF; Murray L
    Dev Cogn Neurosci; 2016 Jun; 19():279-87. PubMed ID: 27261926
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using Facial Micro-Expressions in Combination With EEG and Physiological Signals for Emotion Recognition.
    Saffaryazdi N; Wasim ST; Dileep K; Nia AF; Nanayakkara S; Broadbent E; Billinghurst M
    Front Psychol; 2022; 13():864047. PubMed ID: 35837650
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic stimuli demonstrate a categorical representation of facial expression in the amygdala.
    Harris RJ; Young AW; Andrews TJ
    Neuropsychologia; 2014 Apr; 56(100):47-52. PubMed ID: 24447769
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stimulus arousal drives amygdalar responses to emotional expressions across sensory modalities.
    Lin H; Müller-Bardorff M; Gathmann B; Brieke J; Mothes-Lasch M; Bruchmann M; Miltner WHR; Straube T
    Sci Rep; 2020 Feb; 10(1):1898. PubMed ID: 32024891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.