These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 38758785)

  • 1. Nanocavity in hollow sandwiched catalysts as substrate regulator for boosting hydrodeoxygenation of biomass-derived carbonyl compounds.
    Zheng F; Cao Z; Lin T; Tu B; Shao S; Yang C; An P; Chen W; Fang Q; Wang Y; Tang Z; Li G
    Sci Adv; 2024 May; 10(20):eadn9896. PubMed ID: 38758785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MoO
    Wang L; Yang Y; Yin P; Ren Z; Liu W; Tian Z; Zhang Y; Xu E; Yin J; Wei M
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31799-31807. PubMed ID: 34197068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodeoxygenation of Levulinic Acid to γ-Valerolactone over Mesoporous Silica-Supported Cu-Ni Composite Catalysts.
    Popova M; Trendafilova I; Oykova M; Mitrev Y; Shestakova P; Mihályi MR; Szegedi Á
    Molecules; 2022 Aug; 27(17):. PubMed ID: 36080151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic Catalysis of Ruthenium Nanoparticles and Polyoxometalate Integrated Within Single UiO-66 Microcrystals for Boosting the Efficiency of Methyl Levulinate to γ-Valerolactone.
    Cai X; Xu Q; Tu G; Fu Y; Zhang F; Zhu W
    Front Chem; 2019; 7():42. PubMed ID: 30775365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ru nanoparticles anchored on porous N-doped carbon nanospheres for efficient catalytic hydrogenation of Levulinic acid to γ-valerolactone under solvent-free conditions.
    Li B; Zhao H; Fang J; Li J; Gao W; Ma K; Liu C; Yang H; Ren X; Dong Z
    J Colloid Interface Sci; 2022 Oct; 623():905-914. PubMed ID: 35636298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective hydrodeoxygenation of lignin-derived phenolic monomers to cyclohexanol over tungstated zirconia supported ruthenium catalysts.
    Gan Q; Zhou W; Zhang X; Lin Y; Huang S; Lu GP
    ChemSusChem; 2024 Jun; ():e202400644. PubMed ID: 38923356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hollow MFI Zeolite Supported Pt Catalysts for Highly Selective and Stable Hydrodeoxygenation of Guaiacol to Cycloalkanes.
    Niu X; Feng F; Yuan G; Zhang X; Wang Q
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30836670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ru-MnO
    Liu Y; Gu C; Chen L; Zhou W; Liao Y; Wang C; Ma L
    ACS Appl Mater Interfaces; 2023 Jan; 15(3):4184-4193. PubMed ID: 36626197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodeoxygenation of Lignin-Based Compounds over Ruthenium Catalysts Based on Sulfonated Porous Aromatic Frameworks.
    Bazhenova MA; Kulikov LA; Makeeva DA; Maximov AL; Karakhanov EA
    Polymers (Basel); 2023 Dec; 15(23):. PubMed ID: 38232050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic valorisation of biomass levulinic acid into gamma valerolactone using formic acid as a H
    Hijazi A; Khalaf N; Kwapinski W; Leahy JJ
    RSC Adv; 2022 May; 12(22):13673-13694. PubMed ID: 35530384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilization of acid-rich bio-oil by catalytic mild hydrotreating.
    Choi W; Jo H; Choi JW; Suh DJ; Lee H; Kim C; Kim KH; Lee KY; Ha JM
    Environ Pollut; 2021 Mar; 272():116180. PubMed ID: 33445152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust MOF-derived carbon-supported bimetallic Ni-Co catalysts for aqueous phase hydrodeoxygenation of vanillin.
    Zhang Y; Zhao J; Fan G; Yang L; Li F
    Dalton Trans; 2022 Feb; 51(6):2238-2249. PubMed ID: 35048094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen Spillover-Enhanced Heterogeneously Catalyzed Hydrodeoxygenation for Biomass Upgrading.
    Geng Y; Li H
    ChemSusChem; 2022 Apr; 15(8):e202102495. PubMed ID: 35230748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reductive Upgrading of Biomass-Based Levulinic Acid to γ-Valerolactone Over Ru-Based Single-Atom Catalysts.
    Meng Y; Jian Y; Chen D; Huang J; Zhang H; Li H
    Front Chem; 2022; 10():895198. PubMed ID: 35433635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic role of metals supported on SBA-16 in hydrodeoxygenation of chemical compounds derived from biomass processing.
    Szczyglewska P; Feliczak-Guzik A; Jaroniec M; Nowak I
    RSC Adv; 2021 Mar; 11(16):9505-9517. PubMed ID: 35423430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Temperature Synthesis of Small-Sized Pt/Nb Alloy Catalysts on Carbon Supports for Hydrothermal Reactions.
    Xu SL; Shen SC; Xiong W; Zhao S; Zuo LJ; Wang L; Zeng WJ; Chu SQ; Chen P; Lin Y; Qian K; Huang W; Liang HW
    Inorg Chem; 2020 Nov; 59(21):15953-15961. PubMed ID: 33085476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Sulfuric Acid on the Performance of Ruthenium-based Catalysts in the Liquid-Phase Hydrogenation of Levulinic Acid to γ-Valerolactone.
    Ftouni J; Genuino HC; Muñoz-Murillo A; Bruijnincx PCA; Weckhuysen BM
    ChemSusChem; 2017 Jul; 10(14):2891-2896. PubMed ID: 28603841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic Interaction within Bifunctional Ruthenium Nanoparticle/SILP Catalysts for the Selective Hydrodeoxygenation of Phenols.
    Luska KL; Migowski P; El Sayed S; Leitner W
    Angew Chem Int Ed Engl; 2015 Dec; 54(52):15750-5. PubMed ID: 26545408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Oxide-Derived Ru Catalyst for Ultra-Efficient Hydrogenation of Levulinic Acid to γ-Valerolactone.
    Wang S; Zhuang Z; Chen X; Wang Y; Li X; Yang M; Wu Y; Peng Q; Chen C; Li Y
    Small; 2024 Feb; 20(7):e2306227. PubMed ID: 37806748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodeoxygenation of the angelica lactone dimer, a cellulose-based feedstock: simple, high-yield synthesis of branched C7 -C10 gasoline-like hydrocarbons.
    Mascal M; Dutta S; Gandarias I
    Angew Chem Int Ed Engl; 2014 Feb; 53(7):1854-7. PubMed ID: 24474249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.