BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 38758795)

  • 1. Heatwave responses of Arctic phytoplankton communities are driven by combined impacts of warming and cooling.
    Wolf KKE; Hoppe CJM; Rehder L; Schaum E; John U; Rost B
    Sci Adv; 2024 May; 10(20):eadl5904. PubMed ID: 38758795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amplified Arctic warming by phytoplankton under greenhouse warming.
    Park JY; Kug JS; Bader J; Rolph R; Kwon M
    Proc Natl Acad Sci U S A; 2015 May; 112(19):5921-6. PubMed ID: 25902494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Major restructuring of marine plankton assemblages under global warming.
    Benedetti F; Vogt M; Elizondo UH; Righetti D; Zimmermann NE; Gruber N
    Nat Commun; 2021 Sep; 12(1):5226. PubMed ID: 34471105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global impacts of marine heatwaves on coastal foundation species.
    Smith KE; Aubin M; Burrows MT; Filbee-Dexter K; Hobday AJ; Holbrook NJ; King NG; Moore PJ; Sen Gupta A; Thomsen M; Wernberg T; Wilson E; Smale DA
    Nat Commun; 2024 Jun; 15(1):5052. PubMed ID: 38871692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climatic and biotic extreme events moderate long-term responses of above- and belowground sub-Arctic heathland communities to climate change.
    Bokhorst S; Phoenix GK; Berg MP; Callaghan TV; Kirby-Lambert C; Bjerke JW
    Glob Chang Biol; 2015 Nov; 21(11):4063-75. PubMed ID: 26111101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial insurance against a heatwave differs between trophic levels in experimental aquatic communities.
    Vad CF; Hanny-Endrédi A; Kratina P; Abonyi A; Mironova E; Murray DS; Samchyshyna L; Tsakalakis I; Smeti E; Spatharis S; Tan H; Preiler C; Petrusek A; Bengtsson MM; Ptacnik R
    Glob Chang Biol; 2023 Jun; 29(11):3054-3071. PubMed ID: 36946870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Warming will affect phytoplankton differently: evidence through a mechanistic approach.
    Huertas IE; Rouco M; López-Rodas V; Costas E
    Proc Biol Sci; 2011 Dec; 278(1724):3534-43. PubMed ID: 21508031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Marine heatwaves under global warming.
    Frölicher TL; Fischer EM; Gruber N
    Nature; 2018 Aug; 560(7718):360-364. PubMed ID: 30111788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological Impacts of Marine Heatwaves.
    Smith KE; Burrows MT; Hobday AJ; King NG; Moore PJ; Sen Gupta A; Thomsen MS; Wernberg T; Smale DA
    Ann Rev Mar Sci; 2023 Jan; 15():119-145. PubMed ID: 35977411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arctic browning: Impacts of extreme climatic events on heathland ecosystem CO
    Treharne R; Bjerke JW; Tømmervik H; Stendardi L; Phoenix GK
    Glob Chang Biol; 2019 Feb; 25(2):489-503. PubMed ID: 30474169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased intrusion of warming Atlantic water leads to rapid expansion of temperate phytoplankton in the Arctic.
    Neukermans G; Oziel L; Babin M
    Glob Chang Biol; 2018 Jun; 24(6):2545-2553. PubMed ID: 29394007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Projecting the excess mortality due to heatwave and its characteristics under climate change, population and adaptation scenarios.
    Liu J; Dong H; Li M; Wu Y; Zhang C; Chen J; Yang Z; Lin G; Liu L; Yang J
    Int J Hyg Environ Health; 2023 May; 250():114157. PubMed ID: 36989996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seafloor warm water temperature anomalies impact benthic macrofauna communities of a high-Arctic cold-water fjord.
    Jordà-Molina È; Renaud PE; Silberberger MJ; Sen A; Bluhm BA; Carroll ML; Ambrose WG; Cottier F; Reiss H
    Mar Environ Res; 2023 Jul; 189():106046. PubMed ID: 37295307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Background nutrient concentration determines phytoplankton bloom response to marine heatwaves.
    Hayashida H; Matear RJ; Strutton PG
    Glob Chang Biol; 2020 Sep; 26(9):4800-4811. PubMed ID: 32585056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Southern Ocean phytoplankton physiology in a changing climate.
    Petrou K; Kranz SA; Trimborn S; Hassler CS; Ameijeiras SB; Sackett O; Ralph PJ; Davidson AT
    J Plant Physiol; 2016 Sep; 203():135-150. PubMed ID: 27236210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Findings of new phytoplankton species in the Barents Sea as a consequence of global climate changes.
    Makarevich P; Larionov V; Oleinik A; Vashchenko P
    PeerJ; 2023; 11():e15472. PubMed ID: 37334111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community.
    Bokhorst S; Bjerke JW; Davey MP; Taulavuori K; Taulavuori E; Laine K; Callaghan TV; Phoenix GK
    Physiol Plant; 2010 Oct; 140(2):128-40. PubMed ID: 20497369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate change impacts on wildlife in a High Arctic archipelago - Svalbard, Norway.
    Descamps S; Aars J; Fuglei E; Kovacs KM; Lydersen C; Pavlova O; Pedersen ÅØ; Ravolainen V; Strøm H
    Glob Chang Biol; 2017 Feb; 23(2):490-502. PubMed ID: 27250039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Community stoichiometry in a changing world: combined effects of warming and eutrophication on phytoplankton dynamics.
    Domis LN; Van de Waal DB; Helmsing NR; Van Donk E; Mooij WM
    Ecology; 2014 Jun; 95(6):1485-95. PubMed ID: 25039214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seafloor primary production in a changing Arctic Ocean.
    Attard K; Singh RK; Gattuso JP; Filbee-Dexter K; Krause-Jensen D; Kühl M; Sejr MK; Archambault P; Babin M; Bélanger S; Berg P; Glud RN; Hancke K; Jänicke S; Qin J; Rysgaard S; Sørensen EB; Tachon F; Wenzhöfer F; Ardyna M
    Proc Natl Acad Sci U S A; 2024 Mar; 121(11):e2303366121. PubMed ID: 38437536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.