These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 38758956)

  • 1. Learning Micro-C from Hi-C with diffusion models.
    Liu T; Zhu H; Wang Z
    PLoS Comput Biol; 2024 May; 20(5):e1012136. PubMed ID: 38758956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing chromatin interactions of regulatory elements and nucleosome positions, using Hi-C, Micro-C, and promoter capture Micro-C.
    Lee BH; Wu Z; Rhie SK
    Epigenetics Chromatin; 2022 Dec; 15(1):41. PubMed ID: 36544209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mustache: multi-scale detection of chromatin loops from Hi-C and Micro-C maps using scale-space representation.
    Roayaei Ardakany A; Gezer HT; Lonardi S; Ay F
    Genome Biol; 2020 Sep; 21(1):256. PubMed ID: 32998764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. C2c: Predicting Micro-C from Hi-C.
    Zhu H; Liu T; Wang Z
    Genes (Basel); 2024 May; 15(6):. PubMed ID: 38927609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 7C: Computational Chromosome Conformation Capture by Correlation of ChIP-seq at CTCF motifs.
    Ibn-Salem J; Andrade-Navarro MA
    BMC Genomics; 2019 Oct; 20(1):777. PubMed ID: 31653198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ProbC: joint modeling of epigenome and transcriptome effects in 3D genome.
    Sefer E
    BMC Genomics; 2022 Apr; 23(1):287. PubMed ID: 35397520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variable Extent of Lineage-Specificity and Developmental Stage-Specificity of Cohesin and CCCTC-Binding Factor Binding Within the Immunoglobulin and T Cell Receptor Loci.
    Loguercio S; Barajas-Mora EM; Shih HY; Krangel MS; Feeney AJ
    Front Immunol; 2018; 9():425. PubMed ID: 29593713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes.
    Sanborn AL; Rao SS; Huang SC; Durand NC; Huntley MH; Jewett AI; Bochkov ID; Chinnappan D; Cutkosky A; Li J; Geeting KP; Gnirke A; Melnikov A; McKenna D; Stamenova EK; Lander ES; Aiden EL
    Proc Natl Acad Sci U S A; 2015 Nov; 112(47):E6456-65. PubMed ID: 26499245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methods for comparative ChIA-PET and Hi-C data analysis.
    Capurso D; Tang Z; Ruan Y
    Methods; 2020 Jan; 170():69-74. PubMed ID: 31629084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepChIA-PET: Accurately predicting ChIA-PET from Hi-C and ChIP-seq with deep dilated networks.
    Liu T; Wang Z
    PLoS Comput Biol; 2023 Jul; 19(7):e1011307. PubMed ID: 37440599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HiCcompare: an R-package for joint normalization and comparison of HI-C datasets.
    Stansfield JC; Cresswell KG; Vladimirov VI; Dozmorov MG
    BMC Bioinformatics; 2018 Jul; 19(1):279. PubMed ID: 30064362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CLNN-loop: a deep learning model to predict CTCF-mediated chromatin loops in the different cell lines and CTCF-binding sites (CBS) pair types.
    Zhang P; Wu Y; Zhou H; Zhou B; Zhang H; Wu H
    Bioinformatics; 2022 Sep; 38(19):4497-4504. PubMed ID: 35997565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CTCF-Mediated Chromatin Loops between Promoter and Gene Body Regulate Alternative Splicing across Individuals.
    Ruiz-Velasco M; Kumar M; Lai MC; Bhat P; Solis-Pinson AB; Reyes A; Kleinsorg S; Noh KM; Gibson TJ; Zaugg JB
    Cell Syst; 2017 Dec; 5(6):628-637.e6. PubMed ID: 29199022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin loop anchors are associated with genome instability in cancer and recombination hotspots in the germline.
    Kaiser VB; Semple CA
    Genome Biol; 2018 Jul; 19(1):101. PubMed ID: 30060743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. peakC: a flexible, non-parametric peak calling package for 4C and Capture-C data.
    Geeven G; Teunissen H; de Laat W; de Wit E
    Nucleic Acids Res; 2018 Sep; 46(15):e91. PubMed ID: 29800273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing Hi-C contact matrices for loop detection with Capricorn: a multiview diffusion model.
    Fang T; Liu Y; Woicik A; Lu M; Jha A; Wang X; Li G; Hristov B; Liu Z; Xu H; Noble WS; Wang S
    Bioinformatics; 2024 Jun; 40(Suppl 1):i471-i480. PubMed ID: 38940142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping.
    Rao SS; Huntley MH; Durand NC; Stamenova EK; Bochkov ID; Robinson JT; Sanborn AL; Machol I; Omer AD; Lander ES; Aiden EL
    Cell; 2014 Dec; 159(7):1665-80. PubMed ID: 25497547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of cell-type-specific cohesin-mediated chromatin loops based on chromatin state.
    Liu L; Jia R; Hou R; Huang C
    Methods; 2024 Jun; 226():151-160. PubMed ID: 38670416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping nucleosome and chromatin architectures: A survey of computational methods.
    Fang K; Wang J; Liu L; Jin VX
    Comput Struct Biotechnol J; 2022; 20():3955-3962. PubMed ID: 35950186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristic arrangement of nucleosomes is predictive of chromatin interactions at kilobase resolution.
    Zhang H; Li F; Jia Y; Xu B; Zhang Y; Li X; Zhang Z
    Nucleic Acids Res; 2017 Dec; 45(22):12739-12751. PubMed ID: 29036650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.