BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38759076)

  • 1. A deep learning approach for acute liver failure prediction with combined fully connected and convolutional neural networks.
    Xie H; Wang B; Hong Y
    Technol Health Care; 2024; 32(S1):555-564. PubMed ID: 38759076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictive Analytics for Care and Management of Patients With Acute Diseases: Deep Learning-Based Method to Predict Crucial Complication Phenotypes.
    Sheng JQ; Hu PJ; Liu X; Huang TS; Chen YH
    J Med Internet Res; 2021 Feb; 23(2):e18372. PubMed ID: 33576744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep convolutional neural network and IoT technology for healthcare.
    Wassan S; Dongyan H; Suhail B; Jhanjhi NZ; Xiao G; Ahmed S; Murugesan RK
    Digit Health; 2024; 10():20552076231220123. PubMed ID: 38250147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Refining neural network algorithms for accurate brain tumor classification in MRI imagery.
    Alshuhail A; Thakur A; Chandramma R; Mahesh TR; Almusharraf A; Vinoth Kumar V; Khan SB
    BMC Med Imaging; 2024 May; 24(1):118. PubMed ID: 38773391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of anticancer drug sensitivity using an interpretable model guided by deep learning.
    Pang W; Chen M; Qin Y
    BMC Bioinformatics; 2024 May; 25(1):182. PubMed ID: 38724920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning hidden patterns from patient multivariate time series data using convolutional neural networks: A case study of healthcare cost prediction.
    Morid MA; Sheng ORL; Kawamoto K; Abdelrahman S
    J Biomed Inform; 2020 Nov; 111():103565. PubMed ID: 32980530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of deep neural network for individualized hepatobiliary toxicity prediction after liver SBRT.
    Ibragimov B; Toesca D; Chang D; Yuan Y; Koong A; Xing L
    Med Phys; 2018 Oct; 45(10):4763-4774. PubMed ID: 30098025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Marrying Medical Domain Knowledge With Deep Learning on Electronic Health Records: A Deep Visual Analytics Approach.
    Li R; Yin C; Yang S; Qian B; Zhang P
    J Med Internet Res; 2020 Sep; 22(9):e20645. PubMed ID: 32985996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Individualized prediction of depressive disorder in the elderly: A multitask deep learning approach.
    Xu Z; Zhang Q; Li W; Li M; Yip PSF
    Int J Med Inform; 2019 Dec; 132():103973. PubMed ID: 31569007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ELRL-MD: a deep learning approach for myocarditis diagnosis using cardiac magnetic resonance images with ensemble and reinforcement learning integration.
    Mirzaee Moghaddam Kasmaee A; Ataei A; Moravvej SV; Alizadehsani R; Gorriz JM; Zhang YD; Tan RS; Acharya UR
    Physiol Meas; 2024 May; 45(5):. PubMed ID: 38697206
    [No Abstract]   [Full Text] [Related]  

  • 12. A deep dive into understanding tumor foci classification using multiparametric MRI based on convolutional neural network.
    Zong W; Lee JK; Liu C; Carver EN; Feldman AM; Janic B; Elshaikh MA; Pantelic MV; Hearshen D; Chetty IJ; Movsas B; Wen N
    Med Phys; 2020 Sep; 47(9):4077-4086. PubMed ID: 32449176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using a deep convolutional network to predict the longitudinal dispersion coefficient.
    Ghiasi B; Jodeiri A; Andik B
    J Contam Hydrol; 2021 Jun; 240():103798. PubMed ID: 33770526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early prediction of epileptic seizures using a long-term recurrent convolutional network.
    Wei X; Zhou L; Zhang Z; Chen Z; Zhou Y
    J Neurosci Methods; 2019 Nov; 327():108395. PubMed ID: 31408651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An effective correlation-based data modeling framework for automatic diabetes prediction using machine and deep learning techniques.
    Patro KK; Allam JP; Sanapala U; Marpu CK; Samee NA; Alabdulhafith M; Plawiak P
    BMC Bioinformatics; 2023 Oct; 24(1):372. PubMed ID: 37784049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Addressing database variability in learning from medical data: An ensemble-based approach using convolutional neural networks and a case of study applied to automatic sleep scoring.
    Alvarez-Estevez D; Fernández-Varela I
    Comput Biol Med; 2020 Apr; 119():103697. PubMed ID: 32339128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep-Learning Model Prediction of Radiation Pneumonitis Using Pretreatment Chest Computed Tomography and Clinical Factors.
    Lee JH; Kang MK; Park J; Lee SJ; Kim JC; Park SH
    Technol Cancer Res Treat; 2024; 23():15330338241254060. PubMed ID: 38752262
    [No Abstract]   [Full Text] [Related]  

  • 18. Addressing data imbalance problems in ligand-binding site prediction using a variational autoencoder and a convolutional neural network.
    Nguyen TT; Nguyen DK; Ou YY
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34322702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local augmented graph neural network for multi-omics cancer prognosis prediction and analysis.
    Zhang Y; Xiong S; Wang Z; Liu Y; Luo H; Li B; Zou Q
    Methods; 2023 May; 213():1-9. PubMed ID: 36933628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeepEP: a deep learning framework for identifying essential proteins.
    Zeng M; Li M; Wu FX; Li Y; Pan Y
    BMC Bioinformatics; 2019 Dec; 20(Suppl 16):506. PubMed ID: 31787076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.