These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38759204)

  • 1. Active Darcy's Law.
    Keogh RR; Kozhukhov T; Thijssen K; Shendruk TN
    Phys Rev Lett; 2024 May; 132(18):188301. PubMed ID: 38759204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin of the inertial deviation from Darcy's law: An investigation from a microscopic flow analysis on two-dimensional model structures.
    Agnaou M; Lasseux D; Ahmadi A
    Phys Rev E; 2017 Oct; 96(4-1):043105. PubMed ID: 29347623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalization of Darcy's law for Bingham fluids in porous media: from flow-field statistics to the flow-rate regimes.
    Chevalier T; Talon L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023011. PubMed ID: 25768601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of off-diagonal transport coefficients in two-phase flow in porous media.
    Ramakrishnan TS; Goode PA
    J Colloid Interface Sci; 2015 Jul; 449():392-8. PubMed ID: 25748636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A unified nomenclature for quantification and description of water conducting properties of sapwood xylem based on Darcy's law.
    Reid DE; Silins U; Mendoza C; Lieffers VJ
    Tree Physiol; 2005 Aug; 25(8):993-1000. PubMed ID: 15929930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Examination of Darcys law for flow in porous media with variable porosity.
    Gray WG; Miller CT
    Environ Sci Technol; 2004 Nov; 38(22):5895-901. PubMed ID: 15573587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor growth towards lower extracellular matrix conductivity regions under Darcy's Law and steady morphology.
    Zheng X; Zhao K; Jackson T; Lowengrub J
    J Math Biol; 2022 Jul; 85(1):5. PubMed ID: 35796898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Darcy's Law without Friction in Active Nematic Rheology.
    Mackay F; Toner J; Morozov A; Marenduzzo D
    Phys Rev Lett; 2020 May; 124(18):187801. PubMed ID: 32441954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-phase flow in a chemically active porous medium.
    Darmon A; Benzaquen M; Salez T; Dauchot O
    J Chem Phys; 2014 Dec; 141(24):244704. PubMed ID: 25554172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Darcy's law of yield stress fluids on a treelike network.
    Schimmenti VM; Lanza F; Hansen A; Franz S; Rosso A; Talon L; De Luca A
    Phys Rev E; 2023 Aug; 108(2):L023102. PubMed ID: 37723767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of Lorentz force on the pulsatile flow of a non-Newtonian Casson fluid in a constricted channel using Darcy's law: a numerical study.
    Ali A; Farooq H; Abbas Z; Bukhari Z; Fatima A
    Sci Rep; 2020 Jun; 10(1):10629. PubMed ID: 32606348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macroscopic momentum and mechanical energy equations for incompressible single-phase flow in porous media.
    Paéz-García CT; Valdés-Parada FJ; Lasseux D
    Phys Rev E; 2017 Feb; 95(2-1):023101. PubMed ID: 28297957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement in heat transfer due to hybrid nanoparticles in MHD flow of Brinkman-type fluids using Caputo fractional derivatives.
    Sheikh NA; Ching DLC; Khan I; Sakidin HB
    Sci Rep; 2022 Aug; 12(1):14117. PubMed ID: 35982149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling variable density flow in subsurface and surface water in the vicinity of the boundary between a surface water-atmosphere system and the subsurface.
    Hibi Y
    J Contam Hydrol; 2020 Oct; 234():103688. PubMed ID: 32745797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaporation Limited Radial Capillary Penetration in Porous Media.
    Liu M; Wu J; Gan Y; Hanaor DA; Chen CQ
    Langmuir; 2016 Sep; 32(38):9899-904. PubMed ID: 27583455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A three-dimensional non-hydrostatic coupled model for free surface - Subsurface variable - Density flows.
    Shokri N; Namin MM; Farhoudi J
    J Contam Hydrol; 2018 Sep; 216():38-49. PubMed ID: 30126718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arteriovenous malformation in the brain: a theoretical study explaining the behavior of liquid embolic agents during endovascular treatment.
    Lv X; Wu Z; Li Y
    Neuroradiol J; 2013 Dec; 26(6):661-8. PubMed ID: 24355185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional hydrodynamic lattice-gas simulations of binary immiscible and ternary amphiphilic flow through porous media.
    Love PJ; Maillet JB; Coveney PV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 1):061302. PubMed ID: 11736175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linear stability analysis and nonlinear simulations of convective dissolution in an inclined porous layer between impermeable surfaces.
    Lucena RM; Pontes J; De Wit A; Anjos GR; Mangiavacchi N
    Chaos; 2022 Nov; 32(11):113110. PubMed ID: 36456309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating the Impact of the Covariance of the Friction and Potential Gradient on Describing the Infiltration Process.
    van Damme M
    Transp Porous Media; 2018; 125(3):589-608. PubMed ID: 30930514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.