These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 38759406)

  • 1. Development of transcriptional factor-based whole-cell biosensors to monitor and degrade antibiotics using mutant cells obtained via adaptive laboratory evolution.
    Li J; Qin Z; Zhang B; Wu X; Wu J; Peng L; Xiao Y
    J Hazard Mater; 2024 Jul; 473():134536. PubMed ID: 38759406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directed evolution of TetR for constructing sensitive and broad-spectrum tetracycline antibiotics whole-cell biosensor.
    Li S; Chen D; Liu Z; Tao S; Zhang T; Chen Y; Bao L; Ma J; Huang Y; Xu S; Wu L; Chen S
    J Hazard Mater; 2023 Oct; 460():132311. PubMed ID: 37633019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design, Evolution, and Characterization of a Xylose Biosensor in
    Tang RQ; Wagner JM; Alper HS; Zhao XQ; Bai FW
    ACS Synth Biol; 2020 Oct; 9(10):2714-2722. PubMed ID: 32886884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo detection and quantification of tetracycline by use of a whole-cell biosensor in the rat intestine.
    Bahl MI; Hansen LH; Licht TR; Sørensen SJ
    Antimicrob Agents Chemother; 2004 Apr; 48(4):1112-7. PubMed ID: 15047509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulating Sensitivity of an Erythromycin Biosensor for Precise High-Throughput Screening of Strains with Different Characteristics.
    Wang Y; Li S; Xue N; Wang L; Zhang X; Zhao L; Guo Y; Zhang Y; Wang M
    ACS Synth Biol; 2023 Jun; 12(6):1761-1771. PubMed ID: 37198736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole-cell paper strip biosensors to semi-quantify tetracycline antibiotics in environmental matrices.
    Ma Z; Liu J; Sallach JB; Hu X; Gao Y
    Biosens Bioelectron; 2020 Nov; 168():112528. PubMed ID: 32890930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modularization and Response Curve Engineering of a Naringenin-Responsive Transcriptional Biosensor.
    De Paepe B; Maertens J; Vanholme B; De Mey M
    ACS Synth Biol; 2018 May; 7(5):1303-1314. PubMed ID: 29688705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcription factor-based biosensors in biotechnology: current state and future prospects.
    Mahr R; Frunzke J
    Appl Microbiol Biotechnol; 2016 Jan; 100(1):79-90. PubMed ID: 26521244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a green fluorescence protein (GFP)-based bioassay for detection of antibiotics and its application in milk.
    Yazgan Karacaglar NN; Topcu A; Dudak FC; Boyaci IH
    J Food Sci; 2020 Feb; 85(2):500-509. PubMed ID: 31958152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetically Encoded Biosensor Engineering for Application in Directed Evolution.
    Mao Y; Huang C; Zhou X; Han R; Deng Y; Zhou S
    J Microbiol Biotechnol; 2023 Oct; 33(10):1257-1267. PubMed ID: 37449325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of bioavailable chlortetracycline in pig feces using a bacterial whole-cell biosensor.
    Hansen LH; Aarestrup F; Sørensen SJ
    Vet Microbiol; 2002 Jun; 87(1):51-7. PubMed ID: 12079746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A ratiometric dual-fluorescent paper-based synthetic biosensor for visual detection of tetracycline on-site.
    Liu Y; Wu Y; Wang L; Zhu L; Dong Y; Xu W
    J Hazard Mater; 2024 Apr; 467():133647. PubMed ID: 38335608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial host and reporter gene optimization for genetically encoded whole cell biosensors.
    Brutesco C; Prévéral S; Escoffier C; Descamps ECT; Prudent E; Cayron J; Dumas L; Ricquebourg M; Adryanczyk-Perrier G; de Groot A; Garcia D; Rodrigue A; Pignol D; Ginet N
    Environ Sci Pollut Res Int; 2017 Jan; 24(1):52-65. PubMed ID: 27234828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering tunable biosensors for monitoring putrescine in Escherichia coli.
    Chen XF; Xia XX; Lee SY; Qian ZG
    Biotechnol Bioeng; 2018 Apr; 115(4):1014-1027. PubMed ID: 29251347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel generic dipstick-based technology for rapid and precise detection of tetracycline, streptogramin and macrolide antibiotics in food samples.
    Link N; Weber W; Fussenegger M
    J Biotechnol; 2007 Feb; 128(3):668-80. PubMed ID: 17196286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic biosensor accelerates evolution by rewiring carbon metabolism toward a specific metabolite.
    Seok JY; Han YH; Yang JS; Yang J; Lim HG; Kim SG; Seo SW; Jung GY
    Cell Rep; 2021 Aug; 36(8):109589. PubMed ID: 34433019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macrolide Biosensor Optimization through Cellular Substrate Sequestration.
    Miller CA; Ho JM; Parks SE; Bennett MR
    ACS Synth Biol; 2021 Feb; 10(2):258-264. PubMed ID: 33555859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Allosteric Regulation of DNA Circuits Enables Minimal and Rapid Biosensors of Small Molecules.
    Rodríguez-Serrano AF; Hsing IM
    ACS Synth Biol; 2021 Feb; 10(2):371-378. PubMed ID: 33481567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of oxytetracycline production by Streptomyces rimosus in soil microcosms by combining whole-cell biosensors and flow cytometry.
    Hansen LH; Ferrari B; Sørensen AH; Veal D; Sørensen SJ
    Appl Environ Microbiol; 2001 Jan; 67(1):239-44. PubMed ID: 11133451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, construction and optimization of formaldehyde growth biosensors with broad application in biotechnology.
    Schann K; Bakker J; Boinot M; Kuschel P; He H; Nattermann M; Paczia N; Erb T; Bar-Even A; Wenk S
    Microb Biotechnol; 2024 Jul; 17(7):e14527. PubMed ID: 39031508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.