These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 38759437)
1. Exploring the bioaccessibility of polyphenols and glucosinolates from Brassicaceae microgreens by combining metabolomics profiling and computational chemometrics. García-Pérez P; Tomas M; Rivera-Pérez A; Patrone V; Giuberti G; Capanoglu E; Lucini L Food Chem; 2024 Sep; 452():139565. PubMed ID: 38759437 [TBL] [Abstract][Full Text] [Related]
2. Metabolomic insight into the profile, in vitro bioaccessibility and bioactive properties of polyphenols and glucosinolates from four Brassicaceae microgreens. Tomas M; Zhang L; Zengin G; Rocchetti G; Capanoglu E; Lucini L Food Res Int; 2021 Feb; 140():110039. PubMed ID: 33648265 [TBL] [Abstract][Full Text] [Related]
3. Optimal Brassicaceae family microgreens from a phytochemical and sensory perspective. Bafumo RF; Alloggia FP; Ramirez DA; Maza MA; Fontana A; Moreno DA; Camargo AB Food Res Int; 2024 Oct; 193():114812. PubMed ID: 39160037 [TBL] [Abstract][Full Text] [Related]
4. Bioactive compounds in cruciferous sprouts and microgreens and the effects of sulfur nutrition. Zeng W; Yang J; He Y; Zhu Z J Sci Food Agric; 2023 Dec; 103(15):7323-7332. PubMed ID: 37254614 [TBL] [Abstract][Full Text] [Related]
5. Evidence on the Bioaccessibility of Glucosinolates and Breakdown Products of Cruciferous Sprouts by Simulated In Vitro Gastrointestinal Digestion. Abellán Á; Domínguez-Perles R; García-Viguera C; Moreno DA Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681712 [TBL] [Abstract][Full Text] [Related]
6. Establishing the occurrence of major and minor glucosinolates in Brassicaceae by LC-ESI-hybrid linear ion-trap and Fourier-transform ion cyclotron resonance mass spectrometry. Lelario F; Bianco G; Bufo SA; Cataldi TR Phytochemistry; 2012 Jan; 73(1):74-83. PubMed ID: 22030302 [TBL] [Abstract][Full Text] [Related]
7. Comprehensive Evaluation of Metabolites and Minerals in 6 Microgreen Species and the Influence of Maturity. Johnson SA; Prenni JE; Heuberger AL; Isweiri H; Chaparro JM; Newman SE; Uchanski ME; Omerigic HM; Michell KA; Bunning M; Foster MT; Thompson HJ; Weir TL Curr Dev Nutr; 2021 Feb; 5(2):nzaa180. PubMed ID: 33644632 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of the Bioaccessibility of Antioxidant Bioactive Compounds and Minerals of Four Genotypes of de la Fuente B; López-García G; Máñez V; Alegría A; Barberá R; Cilla A Foods; 2019 Jul; 8(7):. PubMed ID: 31324050 [TBL] [Abstract][Full Text] [Related]
9. Alloggia FP; Bafumo RF; Ramirez DA; Maza MA; Camargo AB Curr Res Food Sci; 2023; 6():100480. PubMed ID: 36969565 [TBL] [Abstract][Full Text] [Related]
10. The glucosinolate profiles of Brassicaceae vegetables responded differently to quick-freezing and drying methods. Luo S; An R; Zhou H; Zhang Y; Ling J; Hu H; Li P Food Chem; 2022 Jul; 383():132624. PubMed ID: 35413764 [TBL] [Abstract][Full Text] [Related]
11. Naturally occurring glucosinolates in plant extracts of rocket salad (Eruca sativa L.) identified by liquid chromatography coupled with negative ion electrospray ionization and quadrupole ion-trap mass spectrometry. Cataldi TR; Rubino A; Lelario F; Bufo SA Rapid Commun Mass Spectrom; 2007; 21(14):2374-88. PubMed ID: 17590871 [TBL] [Abstract][Full Text] [Related]
12. Determination of glucosinolates and isothiocyanates in glucosinolate-rich vegetables and oilseeds using infrared spectroscopy: A systematic review. Ali Redha A; Torquati L; Langston F; Nash GR; Gidley MJ; Cozzolino D Crit Rev Food Sci Nutr; 2024; 64(23):8248-8264. PubMed ID: 37035931 [TBL] [Abstract][Full Text] [Related]
13. Untargeted Metabolomic Analysis of Nonvolatile and Volatile Glucosinolates in Brassicaceae. Liu Y; Zou L; Ong CN Methods Mol Biol; 2022; 2469():219-229. PubMed ID: 35508842 [TBL] [Abstract][Full Text] [Related]
14. Quantification and in vitro bioaccessibility of glucosinolates and trace elements in Brassicaceae leafy vegetables. Cámara-Martos F; Obregón-Cano S; Mesa-Plata O; Cartea-González ME; de Haro-Bailón A Food Chem; 2021 Mar; 339():127860. PubMed ID: 32866700 [TBL] [Abstract][Full Text] [Related]
15. High-performance liquid chromatography-mass spectrometry analysis of plant metabolites in brassicaceae. De Vos RC; Schipper B; Hall RD Methods Mol Biol; 2012; 860():111-28. PubMed ID: 22351174 [TBL] [Abstract][Full Text] [Related]
16. Liquid chromatography-mass spectrometry coupled with multivariate analysis for the characterization and discrimination of extractable and nonextractable polyphenols and glucosinolates from red cabbage and Brussels sprout waste streams. Gonzales GB; Raes K; Vanhoutte H; Coelus S; Smagghe G; Van Camp J J Chromatogr A; 2015 Jul; 1402():60-70. PubMed ID: 26008597 [TBL] [Abstract][Full Text] [Related]
17. Selecting sprouts of brassicaceae for optimum phytochemical composition. Baenas N; Moreno DA; García-Viguera C J Agric Food Chem; 2012 Nov; 60(45):11409-20. PubMed ID: 23061899 [TBL] [Abstract][Full Text] [Related]
18. Edible nuts deliver polyphenols and their transformation products to the large intestine: An in vitro fermentation model combining targeted/untargeted metabolomics. Rocchetti G; Bhumireddy SR; Giuberti G; Mandal R; Lucini L; Wishart DS Food Res Int; 2019 Feb; 116():786-794. PubMed ID: 30717008 [TBL] [Abstract][Full Text] [Related]
19. Metabolic profiling of glucosinolates and their hydrolysis products in a germplasm collection of Brassica rapa turnips. Klopsch R; Witzel K; Börner A; Schreiner M; Hanschen FS Food Res Int; 2017 Oct; 100(Pt 3):392-403. PubMed ID: 28964362 [TBL] [Abstract][Full Text] [Related]