These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 38759529)

  • 21. Hyperscanning: A Valid Method to Study Neural Inter-brain Underpinnings of Social Interaction.
    Czeszumski A; Eustergerling S; Lang A; Menrath D; Gerstenberger M; Schuberth S; Schreiber F; Rendon ZZ; König P
    Front Hum Neurosci; 2020; 14():39. PubMed ID: 32180710
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reliability and Validity of Transcranial Magnetic Stimulation-Electroencephalography Biomarkers.
    Parmigiani S; Ross JM; Cline CC; Minasi CB; Gogulski J; Keller CJ
    Biol Psychiatry Cogn Neurosci Neuroimaging; 2023 Aug; 8(8):805-814. PubMed ID: 36894435
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 14 challenges and their solutions for conducting social neuroscience and longitudinal EEG research with infants.
    Noreika V; Georgieva S; Wass S; Leong V
    Infant Behav Dev; 2020 Feb; 58():101393. PubMed ID: 31830682
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combining TMS and EEG offers new prospects in cognitive neuroscience.
    Miniussi C; Thut G
    Brain Topogr; 2010 Jan; 22(4):249-56. PubMed ID: 19241152
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Home-Based EEG Hyperscanning for Infant-Caregiver Social Interactions.
    Ramanarayanan V; Oon QC; Devarajan AV; Georgieva S; Reindl V
    J Vis Exp; 2024 May; (207):. PubMed ID: 38884496
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Investigation of the Neural Basis of Social Interactions Using Hyperscanning Functional Magnetic Resonance Imaging].
    Sadato N
    Brain Nerve; 2024 Jul; 76(7):843-850. PubMed ID: 38970321
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An Internet-Based Real-Time Audiovisual Link for Dual MEG Recordings.
    Zhdanov A; Nurminen J; Baess P; Hirvenkari L; Jousmäki V; Mäkelä JP; Mandel A; Meronen L; Hari R; Parkkonen L
    PLoS One; 2015; 10(6):e0128485. PubMed ID: 26098628
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New insights into rhythmic brain activity from TMS-EEG studies.
    Thut G; Miniussi C
    Trends Cogn Sci; 2009 Apr; 13(4):182-9. PubMed ID: 19286414
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human Neocortical Neurosolver (HNN), a new software tool for interpreting the cellular and network origin of human MEG/EEG data.
    Neymotin SA; Daniels DS; Caldwell B; McDougal RA; Carnevale NT; Jas M; Moore CI; Hines ML; Hämäläinen M; Jones SR
    Elife; 2020 Jan; 9():. PubMed ID: 31967544
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The contribution of TMS-EEG coregistration in the exploration of the human cortical connectome.
    Bortoletto M; Veniero D; Thut G; Miniussi C
    Neurosci Biobehav Rev; 2015 Feb; 49():114-24. PubMed ID: 25541459
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spectral pattern similarity analysis: Tutorial and application in developmental cognitive neuroscience.
    Sommer VR; Mount L; Weigelt S; Werkle-Bergner M; Sander MC
    Dev Cogn Neurosci; 2022 Apr; 54():101071. PubMed ID: 35063811
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcranial magnetic stimulation--a new tool for functional imaging of the brain.
    Ilmoniemi RJ; Ruohonen J; Karhu J
    Crit Rev Biomed Eng; 1999; 27(3-5):241-84. PubMed ID: 10864281
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A M/EEG-fMRI Fusion Primer: Resolving Human Brain Responses in Space and Time.
    Cichy RM; Oliva A
    Neuron; 2020 Sep; 107(5):772-781. PubMed ID: 32721379
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-invasive imaging modalities to study neurodegenerative diseases of aging brain.
    Annavarapu RN; Kathi S; Vadla VK
    J Chem Neuroanat; 2019 Jan; 95():54-69. PubMed ID: 29474853
    [TBL] [Abstract][Full Text] [Related]  

  • 35. HyPyP: a Hyperscanning Python Pipeline for inter-brain connectivity analysis.
    Ayrolles A; Brun F; Chen P; Djalovski A; Beauxis Y; Delorme R; Bourgeron T; Dikker S; Dumas G
    Soc Cogn Affect Neurosci; 2021 Jan; 16(1-2):72-83. PubMed ID: 33031496
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pearl and pitfalls in brain functional analysis by event-related potentials: a narrative review by the Italian Psychophysiology and Cognitive Neuroscience Society on methodological limits and clinical reliability-part II.
    de Tommaso M; Betti V; Bocci T; Bolognini N; Di Russo F; Fattapposta F; Ferri R; Invitto S; Koch G; Miniussi C; Piccione F; Ragazzoni A; Sartucci F; Rossi S; Valeriani M
    Neurol Sci; 2020 Dec; 41(12):3503-3515. PubMed ID: 32683566
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hypermethods for EEG hyperscanning.
    Babiloni F; Cincotti F; Mattia D; Mattiocco M; De Vico Fallani F; Tocci A; Bianchi L; Marciani MG; Astolfi L
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3666-9. PubMed ID: 17945788
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scale-free brain activity: past, present, and future.
    He BJ
    Trends Cogn Sci; 2014 Sep; 18(9):480-7. PubMed ID: 24788139
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Construction of a fiber-optically connected MEG hyperscanning system for recording brain activity during real-time communication.
    Watanabe H; Shimojo A; Yagyu K; Sonehara T; Takano K; Boasen J; Shiraishi H; Yokosawa K; Saito T
    PLoS One; 2022; 17(6):e0270090. PubMed ID: 35737703
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.