BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 38759802)

  • 1. Progress in membrane distillation processes for dye wastewater treatment: A review.
    Nthunya LN; Chong KC; Lai SO; Lau WJ; López-Maldonado EA; Camacho LM; Shirazi MMA; Ali A; Mamba BB; Osial M; Pietrzyk-Thel P; Pregowska A; Mahlangu OT
    Chemosphere; 2024 Jul; 360():142347. PubMed ID: 38759802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of dye class on the comparison of direct contact and vacuum membrane distillation applied to remediation of dyeing wastewater.
    Ramlow H; Machado RAF; Bierhalz ACK; Marangoni C
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(13):1337-1347. PubMed ID: 31361190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct contact membrane distillation for textile wastewater treatment: a state of the art review.
    Ramlow H; Machado RAF; Marangoni C
    Water Sci Technol; 2017 Nov; 76(9-10):2565-2579. PubMed ID: 29168697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The color removal and fate of organic pollutants in a pilot-scale MBR-NF combined process treating textile wastewater with high water recovery.
    Li K; Jiang C; Wang J; Wei Y
    Water Sci Technol; 2016; 73(6):1426-33. PubMed ID: 27003085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combination of forward osmosis (FO) process with coagulation/flocculation (CF) for potential treatment of textile wastewater.
    Han G; Liang CZ; Chung TS; Weber M; Staudt C; Maletzko C
    Water Res; 2016 Mar; 91():361-70. PubMed ID: 26820358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction.
    Xie M; Shon HK; Gray SR; Elimelech M
    Water Res; 2016 Feb; 89():210-21. PubMed ID: 26674549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyelectrolyte-promoted forward osmosis-membrane distillation (FO-MD) hybrid process for dye wastewater treatment.
    Ge Q; Wang P; Wan C; Chung TS
    Environ Sci Technol; 2012 Jun; 46(11):6236-43. PubMed ID: 22536834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of concentrating textile wastewater using a hybrid forward osmosis-membrane distillation (FO-MD) process: Performance and economic evaluation.
    Li M; Li K; Wang L; Zhang X
    Water Res; 2020 Apr; 172():115488. PubMed ID: 31951948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dye synthetic solution treatment by direct contact membrane distillation using commercial membranes.
    Ramlow H; Machado RAF; Bierhalz ACK; Marangoni C
    Environ Technol; 2020 Jul; 41(17):2253-2265. PubMed ID: 30569840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustainable water recovery from oily wastewater via forward osmosis-membrane distillation (FO-MD).
    Zhang S; Wang P; Fu X; Chung TS
    Water Res; 2014 Apr; 52():112-21. PubMed ID: 24463175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrocoagulation of blue reactive, red disperse and mixed dyes, and application in treating textile effluent.
    Phalakornkule C; Polgumhang S; Tongdaung W; Karakat B; Nuyut T
    J Environ Manage; 2010; 91(4):918-26. PubMed ID: 20042267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrocoagulation applied for textile wastewater oxidation using iron slag as electrodes.
    De Maman R; da Luz VC; Behling L; Dervanoski A; Dalla Rosa C; Pasquali GDL
    Environ Sci Pollut Res Int; 2022 May; 29(21):31713-31722. PubMed ID: 35018597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation.
    An AK; Guo J; Jeong S; Lee EJ; Tabatabai SAA; Leiknes T
    Water Res; 2016 Oct; 103():362-371. PubMed ID: 27486044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review on existing and emerging approaches for textile wastewater treatments: challenges and future perspectives.
    Kallawar GA; Bhanvase BA
    Environ Sci Pollut Res Int; 2024 Jan; 31(2):1748-1789. PubMed ID: 38055170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Textiles wastewater treatment technology: A review.
    Deng D; Lamssali M; Aryal N; Ofori-Boadu A; Jha MK; Samuel RE
    Water Environ Res; 2020 Oct; 92(10):1805-1810. PubMed ID: 32790931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The self-boosting ultrafast removal of Cr(VI) and organic dye in textile wastewater through sulfite-induced redox processes.
    Yuan Y; Tian Q; Hou L; Rao R; Yao C; Zhu H
    Environ Pollut; 2024 Aug; 355():124182. PubMed ID: 38776997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment of textile wastewater with membrane bioreactor: A critical review.
    Jegatheesan V; Pramanik BK; Chen J; Navaratna D; Chang CY; Shu L
    Bioresour Technol; 2016 Mar; 204():202-212. PubMed ID: 26776150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Textile dye degradation using nano zero valent iron: A review.
    Raman CD; Kanmani S
    J Environ Manage; 2016 Jul; 177():341-55. PubMed ID: 27115482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Textile dye removal from wastewater effluents using bioflocculants produced by indigenous bacterial isolates.
    Buthelezi SP; Olaniran AO; Pillay B
    Molecules; 2012 Nov; 17(12):14260-74. PubMed ID: 23201644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A censorious review on the role of natural lignocellulosic fiber waste as a low-cost adsorbent for removal of diverse textile industrial pollutants.
    Babu RS; Prasanna K; Kumar PS
    Environ Res; 2022 Dec; 215(Pt 1):114183. PubMed ID: 36063910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.