These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 38759845)

  • 1. Co-utilization of carbon sources in microorganisms for the bioproduction of chemicals.
    Ma Q; Yi J; Tang Y; Geng Z; Zhang C; Sun W; Liu Z; Xiong W; Wu H; Xie X
    Biotechnol Adv; 2024; 73():108380. PubMed ID: 38759845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rewiring the microbial metabolic network for efficient utilization of mixed carbon sources.
    An N; Chen X; Sheng H; Wang J; Sun X; Yan Y; Shen X; Yuan Q
    J Ind Microbiol Biotechnol; 2021 Dec; 48(9-10):. PubMed ID: 34215883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rewiring carbon catabolite repression for microbial cell factory.
    Vinuselvi P; Kim MK; Lee SK; Ghim CM
    BMB Rep; 2012 Feb; 45(2):59-70. PubMed ID: 22360882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implications of carbon catabolite repression for plant-microbe interactions.
    Franzino T; Boubakri H; Cernava T; Abrouk D; Achouak W; Reverchon S; Nasser W; Haichar FEZ
    Plant Commun; 2022 Mar; 3(2):100272. PubMed ID: 35529946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon Catabolite Repression Governs Diverse Physiological Processes and Development in Aspergillus nidulans.
    Chen Y; Dong L; Alam MA; Pardeshi L; Miao Z; Wang F; Tan K; Hynes MJ; Kelly JM; Wong KH
    mBio; 2021 Feb; 13(1):e0373421. PubMed ID: 35164551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous carbon catabolite repression governs sugar and aromatic co-utilization in
    Shrestha S; Awasthi D; Chen Y; Gin J; Petzold CJ; Adams PD; Simmons BA; Singer SW
    Appl Environ Microbiol; 2023 Oct; 89(10):e0085223. PubMed ID: 37724856
    [No Abstract]   [Full Text] [Related]  

  • 7. Implications of carbon catabolite repression for Aspergillus-based cell factories: A review.
    Wang ZD; Wang BT; Jin L; Ruan HH; Jin FJ
    Biotechnol J; 2024 Feb; 19(2):e2300551. PubMed ID: 38403447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of carbon and nitrogen catabolite repression in microorganisms.
    Nair A; Sarma SJ
    Microbiol Res; 2021 Oct; 251():126831. PubMed ID: 34325194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization.
    Brückner R; Titgemeyer F
    FEMS Microbiol Lett; 2002 Apr; 209(2):141-8. PubMed ID: 12007797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon Catabolite Repression in Filamentous Fungi.
    Adnan M; Zheng W; Islam W; Arif M; Abubakar YS; Wang Z; Lu G
    Int J Mol Sci; 2017 Dec; 19(1):. PubMed ID: 29295552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon catabolite regulation in Streptomyces: new insights and lessons learned.
    Romero-Rodríguez A; Rocha D; Ruiz-Villafán B; Guzmán-Trampe S; Maldonado-Carmona N; Vázquez-Hernández M; Zelarayán A; Rodríguez-Sanoja R; Sánchez S
    World J Microbiol Biotechnol; 2017 Sep; 33(9):162. PubMed ID: 28770367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomic analysis of a classical model of carbon catabolite regulation in Streptomyces coelicolor.
    Romero-Rodríguez A; Rocha D; Ruiz-Villafan B; Tierrafría V; Rodríguez-Sanoja R; Segura-González D; Sánchez S
    BMC Microbiol; 2016 Apr; 16():77. PubMed ID: 27121083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptation on xylose improves glucose-xylose co-utilization and ethanol production in a carbon catabolite repression (CCR) compromised ethanologenic strain.
    Dev C; Jilani SB; Yazdani SS
    Microb Cell Fact; 2022 Aug; 21(1):154. PubMed ID: 35933385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alleviation of carbon catabolite repression in Enterobacter aerogenes for efficient utilization of sugarcane molasses for 2,3-butanediol production.
    Jung MY; Jung HM; Lee J; Oh MK
    Biotechnol Biofuels; 2015; 8():106. PubMed ID: 26236395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Carbon catabolite repression or how bacteria choose their favorite sugars].
    Galinier A
    Med Sci (Paris); 2018; 34(6-7):531-539. PubMed ID: 30067204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent progress in metabolic engineering of microbial formate assimilation.
    Mao W; Yuan Q; Qi H; Wang Z; Ma H; Chen T
    Appl Microbiol Biotechnol; 2020 Aug; 104(16):6905-6917. PubMed ID: 32566995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pseudomonad reverse carbon catabolite repression, interspecies metabolite exchange, and consortial division of labor.
    Park H; McGill SL; Arnold AD; Carlson RP
    Cell Mol Life Sci; 2020 Feb; 77(3):395-413. PubMed ID: 31768608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethanolamine Utilization and Bacterial Microcompartment Formation Are Subject to Carbon Catabolite Repression.
    Kaval KG; Gebbie M; Goodson JR; Cruz MR; Winkler WC; Garsin DA
    J Bacteriol; 2019 May; 201(10):. PubMed ID: 30833356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of
    de Assis LJ; Ulas M; Ries LNA; El Ramli NAM; Sarikaya-Bayram O; Braus GH; Bayram O; Goldman GH
    mBio; 2018 Jun; 9(3):. PubMed ID: 29921666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose-Mediated Repression of Plant Biomass Utilization in the White-Rot Fungus
    Daly P; Peng M; Di Falco M; Lipzen A; Wang M; Ng V; Grigoriev IV; Tsang A; Mäkelä MR; de Vries RP
    Appl Environ Microbiol; 2019 Dec; 85(23):. PubMed ID: 31585998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.