These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38760659)

  • 21. Are mechanical valves with enhanced inner diameter advantageous in the small sized aortic annulus?
    Albes JM; Hartrumpf M; Rudolph V; Krempl T; Hüttemann E; Vollandt R; Wahlers T
    Ann Thorac Surg; 2003 Nov; 76(5):1564-70; discussion 1570. PubMed ID: 14602286
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solid-liquid-liquid wettability and its prediction with surface free energy models.
    Stammitti-Scarpone A; Acosta EJ
    Adv Colloid Interface Sci; 2019 Feb; 264():28-46. PubMed ID: 30396508
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational Hemodynamic Investigation of Bileaflet and Trileaflet Mechanical Heart Valves.
    Kuan YH; Nguyen VT; Kabinejadian F; Leo HL
    J Heart Valve Dis; 2015 May; 24(3):393-403. PubMed ID: 26901919
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-Resolution Measurements of Leakage Flow Inside the Hinge of a Large-scale Bileaflet Mechanical Heart Valve Hinge Model.
    Klusak E; Quinlan NJ
    Cardiovasc Eng Technol; 2019 Sep; 10(3):469-481. PubMed ID: 31236828
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity.
    Jung YC; Bhushan B
    Langmuir; 2009 Dec; 25(24):14165-73. PubMed ID: 19637877
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses.
    Ge L; Dasi LP; Sotiropoulos F; Yoganathan AP
    Ann Biomed Eng; 2008 Feb; 36(2):276-97. PubMed ID: 18049902
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro comparison of bileaflet aortic heart valve prostheses. St. Jude Medical, CarboMedics, modified Edwards-Duromedics, and Sorin-Bicarbon valves.
    Reul H; van Son JA; Steinseifer U; Schmitz B; Schmidt A; Schmitz C; Rau G
    J Thorac Cardiovasc Surg; 1993 Sep; 106(3):412-20. PubMed ID: 8361181
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cavitation threshold ranking and erosion characteristics of bileaflet heart valve prostheses.
    Richard G; Beavan A; Strzepa P
    J Heart Valve Dis; 1994 Apr; 3 Suppl 1():S94-101. PubMed ID: 8061875
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New Insights into the Role of the Surrounding Medium Temperature in the Under-Liquid Wetting of Solid Surfaces.
    Ismail MF; Khorshidi B; Sadrzadeh M
    Langmuir; 2020 Jul; 36(28):8301-8310. PubMed ID: 32584578
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wetting transitions in underwater oleophobic surface of brass.
    Hejazi V; Nyong AE; Rohatgi PK; Nosonovsky M
    Adv Mater; 2012 Nov; 24(44):5963-6. PubMed ID: 22945753
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of Transvalvar Pressure Gradient on Hinge Washing in Closed Mechanical Prosthetic Cardiac Valves Under Pulmonary Pressure Conditions: A Comparative In Vitro Study.
    Pragt H; van Melle JP; Mariani MA; Verkerke GJ; Ebels T
    World J Pediatr Congenit Heart Surg; 2019 Mar; 10(2):145-150. PubMed ID: 30841840
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hemolysis in mechanical bileaflet prostheses: experience with the Bicarbon valve.
    Josa M; Castellá M; Paré C; Bedini JL; Cartañá R; Mestres CA; Pomar JL; Mulet J
    Ann Thorac Surg; 2006 Apr; 81(4):1291-6. PubMed ID: 16564260
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro hydrodynamic characteristics among three bileaflet valves in the mitral position.
    Feng Z; Umezu M; Fujimoto T; Tsukahara T; Nurishi M; Kawaguchi D
    Artif Organs; 2000 May; 24(5):346-54. PubMed ID: 10848675
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A numerical investigation of blood damage in the hinge area of aortic bileaflet mechanical heart valves during the leakage phase.
    Yun BM; Wu J; Simon HA; Arjunon S; Sotiropoulos F; Aidun CK; Yoganathan AP
    Ann Biomed Eng; 2012 Jul; 40(7):1468-85. PubMed ID: 22215278
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wettability of Complex Fluids and Surfactant Capped Nanoparticle-Induced Quasi-Universal Wetting Behavior.
    Harikrishnan AR; Dhar P; Agnihotri PK; Gedupudi S; Das SK
    J Phys Chem B; 2017 Jun; 121(24):6081-6095. PubMed ID: 28585819
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrodynamic characteristics of bileaflet mechanical heart valves in an artificial heart: cavitation and closing velocity.
    Lee H; Homma A; Taenaka Y
    Artif Organs; 2007 Jul; 31(7):532-7. PubMed ID: 17584477
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical analysis of the hemodynamic performance of bileaflet mechanical heart valves at different implantation angles.
    Kuan YH; Nguyen VT; Kabinejadian F; Su B; Kim S; Yoganathan AP; Leo HL
    J Heart Valve Dis; 2014 Sep; 23(5):642-50. PubMed ID: 25799715
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular Dynamics Simulations of Oil-Water Wetting Models of Organic Matter and Minerals in Shale at the Nanometer Scale.
    Dong Z; Xue H; Li B; Tian S; Lu S; Lu S
    J Nanosci Nanotechnol; 2021 Jan; 21(1):85-97. PubMed ID: 33213615
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simulation of the three-dimensional hinge flow fields of a bileaflet mechanical heart valve under aortic conditions.
    Simon HA; Ge L; Borazjani I; Sotiropoulos F; Yoganathan AP
    Ann Biomed Eng; 2010 Mar; 38(3):841-53. PubMed ID: 19960368
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.