BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38760686)

  • 1. Deep learning for determining the difficulty of endodontic treatment: a pilot study.
    Karkehabadi H; Khoshbin E; Ghasemi N; Mahavi A; Mohammad-Rahimi H; Sadr S
    BMC Oral Health; 2024 May; 24(1):574. PubMed ID: 38760686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial Intelligence for Detection of External Cervical Resorption Using Label-Efficient Self-Supervised Learning Method.
    Mohammad-Rahimi H; Dianat O; Abbasi R; Zahedrozegar S; Ashkan A; Motamedian SR; Rohban MH; Nosrat A
    J Endod; 2024 Feb; 50(2):144-153.e2. PubMed ID: 37977219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Endodontic Forecasting Model Based on the Analysis of Preoperative Dental Radiographs: A Pilot Study on an Endodontic Predictive Deep Neural Network.
    Lee J; Seo H; Choi YJ; Lee C; Kim S; Lee YS; Lee S; Kim E
    J Endod; 2023 Jun; 49(6):710-719. PubMed ID: 37019378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-modal deep learning for automated assembly of periapical radiographs.
    Pfänder L; Schneider L; Büttner M; Krois J; Meyer-Lueckel H; Schwendicke F
    J Dent; 2023 Aug; 135():104588. PubMed ID: 37348642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-supervised learning for remote sensing scene classification under the few shot scenario.
    Alosaimi N; Alhichri H; Bazi Y; Ben Youssef B; Alajlan N
    Sci Rep; 2023 Jan; 13(1):433. PubMed ID: 36624136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of deep learning for automated diagnosis and classification of hip dysplasia on plain radiographs.
    Magnéli M; Borjali A; Takahashi E; Axenhus M; Malchau H; Moratoglu OK; Varadarajan KM
    BMC Musculoskelet Disord; 2024 Feb; 25(1):117. PubMed ID: 38336666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing diagnostic deep learning via self-supervised pretraining on large-scale, unlabeled non-medical images.
    Tayebi Arasteh S; Misera L; Kather JN; Truhn D; Nebelung S
    Eur Radiol Exp; 2024 Feb; 8(1):10. PubMed ID: 38326501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficacy of deep convolutional neural network algorithm for the identification and classification of dental implant systems, using panoramic and periapical radiographs: A pilot study.
    Lee JH; Jeong SN
    Medicine (Baltimore); 2020 Jun; 99(26):e20787. PubMed ID: 32590758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the classification of veterinary thoracic radiographs through inter-species and inter-pathology self-supervised pre-training of deep learning models.
    Celniak W; Wodziński M; Jurgas A; Burti S; Zotti A; Atzori M; Müller H; Banzato T
    Sci Rep; 2023 Nov; 13(1):19518. PubMed ID: 37945653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Transfer Learning Models in Pelvic Tilt and Rotation Measurement in Pediatric Anteroposterior Pelvic Radiographs.
    Li C; Yan Y; Xu H; Cao H; Zhang J; Sha J; Fan Z; Huang L
    J Digit Imaging; 2022 Dec; 35(6):1506-1513. PubMed ID: 35711070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ChampKit: A framework for rapid evaluation of deep neural networks for patch-based histopathology classification.
    Kaczmarzyk JR; Gupta R; Kurc TM; Abousamra S; Saltz JH; Koo PK
    Comput Methods Programs Biomed; 2023 Sep; 239():107631. PubMed ID: 37271050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Learning-Enabled Detection of Pneumoperitoneum in Supine and Erect Abdominal Radiography: Modeling Using Transfer Learning and Semi-Supervised Learning.
    Park S; Ye JC; Lee ES; Cho G; Yoon JW; Choi JH; Joo I; Lee YJ
    Korean J Radiol; 2023 Jun; 24(6):541-552. PubMed ID: 37271208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated semantic labeling of pediatric musculoskeletal radiographs using deep learning.
    Yi PH; Kim TK; Wei J; Shin J; Hui FK; Sair HI; Hager GD; Fritz J
    Pediatr Radiol; 2019 Jul; 49(8):1066-1070. PubMed ID: 31041454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contrastive self-supervised learning for diabetic retinopathy early detection.
    Ouyang J; Mao D; Guo Z; Liu S; Xu D; Wang W
    Med Biol Eng Comput; 2023 Sep; 61(9):2441-2452. PubMed ID: 37119374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intraoral radiograph anatomical region classification using neural networks.
    Kyventidis N; Angelopoulos C
    Int J Comput Assist Radiol Surg; 2021 Mar; 16(3):447-455. PubMed ID: 33625664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A deep learning approach to dental restoration classification from bitewing and periapical radiographs.
    Karatas O; Cakir NN; Ozsariyildiz SS; Kis HC; Demirbuga S; Gurgan CA
    Quintessence Int; 2021 Jun; 52(7):568-574. PubMed ID: 33880914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contrastive learning-based pretraining improves representation and transferability of diabetic retinopathy classification models.
    Alam MN; Yamashita R; Ramesh V; Prabhune T; Lim JI; Chan RVP; Hallak J; Leng T; Rubin D
    Sci Rep; 2023 Apr; 13(1):6047. PubMed ID: 37055475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A deep learning approach for projection and body-side classification in musculoskeletal radiographs.
    Fink A; Tran H; Reisert M; Rau A; Bayer J; Kotter E; Bamberg F; Russe MF
    Eur Radiol Exp; 2024 Feb; 8(1):23. PubMed ID: 38353812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial intelligence for caries and periapical periodontitis detection.
    Li S; Liu J; Zhou Z; Zhou Z; Wu X; Li Y; Wang S; Liao W; Ying S; Zhao Z
    J Dent; 2022 Jul; 122():104107. PubMed ID: 35341892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.