These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 38761011)

  • 1. Increasing CRISPR/Cas9-mediated gene editing efficiency in T7 phage by reducing the escape rate based on insight into the survival mechanism.
    Sun M; Gao J; Tang H; Wu T; Ma Q; Zhang S; Zuo Y; Li Q
    Acta Biochim Biophys Sin (Shanghai); 2024 Jun; 56(6):937-944. PubMed ID: 38761011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in
    Zhang WW; Matlashewski G
    mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9.
    Shen J; Zhou J; Chen GQ; Xiu ZL
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29899105
    [No Abstract]   [Full Text] [Related]  

  • 4. CRISPR-Cas9 Based Bacteriophage Genome Editing.
    Zhang X; Zhang C; Liang C; Li B; Meng F; Ai Y
    Microbiol Spectr; 2022 Aug; 10(4):e0082022. PubMed ID: 35880867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of CRISPR and Marker-Based Methods for the Engineering of Phage T7.
    Grigonyte AM; Harrison C; MacDonald PR; Montero-Blay A; Tridgett M; Duncan J; Sagona AP; Constantinidou C; Jaramillo A; Millard A
    Viruses; 2020 Feb; 12(2):. PubMed ID: 32050613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system.
    Kiro R; Shitrit D; Qimron U
    RNA Biol; 2014; 11(1):42-4. PubMed ID: 24457913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of multiplexed CRISPR/Cas9 system for highly efficient genome editing in Setaria viridis.
    Weiss T; Wang C; Kang X; Zhao H; Elena Gamo M; Starker CG; Crisp PA; Zhou P; Springer NM; Voytas DF; Zhang F
    Plant J; 2020 Nov; 104(3):828-838. PubMed ID: 32786122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. INDEL detection, the 'Achilles heel' of precise genome editing: a survey of methods for accurate profiling of gene editing induced indels.
    Bennett EP; Petersen BL; Johansen IE; Niu Y; Yang Z; Chamberlain CA; Met Ö; Wandall HH; Frödin M
    Nucleic Acids Res; 2020 Dec; 48(21):11958-11981. PubMed ID: 33170255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A functional type II-A CRISPR-Cas system from Listeria enables efficient genome editing of large non-integrating bacteriophage.
    Hupfeld M; Trasanidou D; Ramazzini L; Klumpp J; Loessner MJ; Kilcher S
    Nucleic Acids Res; 2018 Jul; 46(13):6920-6933. PubMed ID: 30053228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Cas9-Mediated Genome Modifications in Zebrafish.
    Kamachi Y; Kawahara A
    Methods Mol Biol; 2023; 2637():313-324. PubMed ID: 36773157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9-Mediated Targeted Knockin of Exogenous Reporter Genes in Zebrafish.
    Kawahara A
    Methods Mol Biol; 2017; 1630():165-173. PubMed ID: 28643258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cas9-Mediated Genome Editing in Leishmania donovani.
    Zhang WW; Matlashewski G
    mBio; 2015 Jul; 6(4):e00861. PubMed ID: 26199327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. T7 Polymerase Expression of Guide RNAs in vivo Allows Exportable CRISPR-Cas9 Editing in Multiple Yeast Hosts.
    Morse NJ; Wagner JM; Reed KB; Gopal MR; Lauffer LH; Alper HS
    ACS Synth Biol; 2018 Apr; 7(4):1075-1084. PubMed ID: 29565571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA polymerases in precise and predictable CRISPR/Cas9-mediated chromosomal rearrangements.
    Mehryar MM; Shi X; Li J; Wu Q
    BMC Biol; 2023 Dec; 21(1):288. PubMed ID: 38066536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR based targeted genome editing of Chlamydomonas reinhardtii using programmed Cas9-gRNA ribonucleoprotein.
    Dhokane D; Bhadra B; Dasgupta S
    Mol Biol Rep; 2020 Nov; 47(11):8747-8755. PubMed ID: 33074412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient ligase 3-dependent microhomology-mediated end joining repair of DNA double-strand breaks in zebrafish embryos.
    He MD; Zhang FH; Wang HL; Wang HP; Zhu ZY; Sun YH
    Mutat Res; 2015 Oct; 780():86-96. PubMed ID: 26318124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The endless battle between phages and CRISPR-Cas systems in
    Philippe C; Moineau S
    Biochem Cell Biol; 2021 Aug; 99(4):397-402. PubMed ID: 33534660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potent Cas9 Inhibition in Bacterial and Human Cells by AcrIIC4 and AcrIIC5 Anti-CRISPR Proteins.
    Lee J; Mir A; Edraki A; Garcia B; Amrani N; Lou HE; Gainetdinov I; Pawluk A; Ibraheim R; Gao XD; Liu P; Davidson AR; Maxwell KL; Sontheimer EJ
    mBio; 2018 Dec; 9(6):. PubMed ID: 30514786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the Editing Efficiency of CRISPR-Cas9 by Reducing the Generation of Escapers Based on the Surviving Mechanism.
    Li Q; Sun M; Lv L; Zuo Y; Zhang S; Zhang Y; Yang S
    ACS Synth Biol; 2023 Mar; 12(3):672-680. PubMed ID: 36867054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.