These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 3876116)

  • 21. Electrical properties of structural components of the crystalline lens.
    Mathias RT; Rae JL; Eisenberg RS
    Biophys J; 1979 Jan; 25(1):181-201. PubMed ID: 262384
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of pH on membrane conductance and intercellular resistance in the rat lens.
    Bassnett S; Duncan G
    J Physiol; 1988 Apr; 398():507-21. PubMed ID: 3392681
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of changes in external ion concentrations and 2,4-dinitrophenol on the conductance of toad lens membranes.
    Duncan G; Croghan PC
    Exp Eye Res; 1970 Oct; 10(2):192-200. PubMed ID: 5484763
    [No Abstract]   [Full Text] [Related]  

  • 24. A TEA-sensitive component in the conductance of a non-excitable tissue (the amphibian lens).
    Patmore L; Duncan G
    Exp Eye Res; 1979 Mar; 28(3):349-52. PubMed ID: 312210
    [No Abstract]   [Full Text] [Related]  

  • 25. Electrostatic properties of fiber cell membranes from the frog lens.
    Pasquale LR; Mathias RT; Austin LR; Brink PR; Ciunga M
    Biophys J; 1990 Oct; 58(4):939-45. PubMed ID: 2248997
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calcium controls both sodium and potassium permeability of lens membranes.
    Jacob TJ; Duncan G
    Exp Eye Res; 1981 Jul; 33(1):85-93. PubMed ID: 6265254
    [No Abstract]   [Full Text] [Related]  

  • 27. Temperature dependence of transcellular and intracellular parameters of frog skin.
    Dinno MA; Nagel W
    Prog Clin Biol Res; 1988; 258():103-20. PubMed ID: 2454480
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differentiation-dependent changes in the membrane properties of fiber cells isolated from the rat lens.
    Webb KF; Donaldson PJ
    Am J Physiol Cell Physiol; 2008 May; 294(5):C1133-45. PubMed ID: 18367590
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel properties of the depolarization-induced endogenous sodium conductance in the Xenopus laevis oocyte.
    Rettinger J
    Pflugers Arch; 1999 May; 437(6):917-24. PubMed ID: 10370071
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cell-attached patch clamp study of the electropermeabilization of amphibian cardiac cells.
    O'Neill RJ; Tung L
    Biophys J; 1991 May; 59(5):1028-39. PubMed ID: 1907865
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The rate constants of valinomycin-mediated ion transport through thin lipid membranes.
    Stark G; Ketterer B; Benz R; Läuger P
    Biophys J; 1971 Dec; 11(12):981-94. PubMed ID: 4332419
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic theory model for ion movement through biological membranes. II. Interionic selectivity.
    Mackey MC
    Biophys J; 1971 Jan; 11(1):91-7. PubMed ID: 5539002
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The properties of bovine lens membranes measured by a conventional double-chamber method.
    Delamere NA; Duncan G
    J Physiol; 1979 Oct; 295():241-9. PubMed ID: 521929
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Indifference of the resting potential of frog muscle cells to external Mg++ in the face of high Mg++ permeability.
    Ling GN; Walton CL; Ochsenfeld MM
    Physiol Chem Phys Med NMR; 1983; 15(5):379-90. PubMed ID: 6609379
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determinants of time-dependent membrane conductance. The nonrole of classical ion-membrane molecule interactions.
    Mackey MC; McNeel ML
    Biophys J; 1973 Aug; 13(8):733-46. PubMed ID: 4726876
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intracellular potassium activity in frog lens determined using ion specific liquid ion-exchanger filled microelectrodes.
    Paterson CA; Neville MC; Jenkins RM; Nordstrom DK
    Exp Eye Res; 1974 Jul; 19(1):43-8. PubMed ID: 4547234
    [No Abstract]   [Full Text] [Related]  

  • 37. Steady-state current flow through gap junctions. Effects on intracellular ion concentrations and fluid movement.
    Brink PR; Mathias RT; Jaslove SW; Baldo GJ
    Biophys J; 1988 May; 53(5):795-807. PubMed ID: 3390521
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Potential profiles in the crystalline lens of the frog.
    Rae JL
    Exp Eye Res; 1974 Sep; 19(3):227-34. PubMed ID: 4547546
    [No Abstract]   [Full Text] [Related]  

  • 39. Membrane potentials across the bovine lens capsule in vitro.
    Takeguchi N; Nakagaki M
    Biochim Biophys Acta; 1970 Dec; 219(2):405-14. PubMed ID: 5497199
    [No Abstract]   [Full Text] [Related]  

  • 40. Slow potential changes due to transport number effects in cells with unstirred membrane invaginations or dendrites.
    Barry PH
    J Membr Biol; 1984; 82(3):221-39. PubMed ID: 6099423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.