BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 38761223)

  • 21. Characterizing the proteome and oxi-proteome of apple in response to a host (Penicillium expansum) and a non-host (Penicillium digitatum) pathogen.
    Buron-Moles G; Wisniewski M; Viñas I; Teixidó N; Usall J; Droby S; Torres R
    J Proteomics; 2015 Jan; 114():136-51. PubMed ID: 25464364
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Influence of Long-Term Storage on the Epiphytic Microbiome of Postharvest Apples and on
    Al Riachy R; Strub C; Durand N; Chochois V; Lopez-Lauri F; Fontana A; Schorr-Galindo S
    Toxins (Basel); 2024 Feb; 16(2):. PubMed ID: 38393181
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Leuconostoc mesenteroides subsp. mesenteroides LB7 isolated from apple surface inhibits P. expansum in vitro and reduces patulin in fruit juices.
    Ngolong Ngea GL; Yang Q; Tchabo W; Castoria R; Zhang X; Zhang H
    Int J Food Microbiol; 2021 Feb; 339():109025. PubMed ID: 33360297
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of the activity of the antifungal PgAFP protein and its producer mould against Penicillium spp postharvest pathogens of citrus and pome fruits.
    Delgado J; Ballester AR; Núñez F; González-Candelas L
    Food Microbiol; 2019 Dec; 84():103266. PubMed ID: 31421779
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Native pears of Sardinia affect Penicillium expansum pathogenesis.
    Cubaiu L; Azara E; Ladu G; Venditti T; D'Hallewin G
    Commun Agric Appl Biol Sci; 2013; 78(3):573-7. PubMed ID: 25151833
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Indole-3-acetic acid improves postharvest biological control of blue mold rot of apple by Cryptococcus laurentii.
    Yu T; Chen J; Lu H; Zheng X
    Phytopathology; 2009 Mar; 99(3):258-64. PubMed ID: 19203278
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro activity of imazalil against Penicillium expansum: comparison of the CLSI M38-A broth microdilution method with traditional techniques.
    Cabañas R; Abarca ML; Bragulat MR; Cabañes FJ
    Int J Food Microbiol; 2009 Jan; 129(1):26-9. PubMed ID: 19059665
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular Tools for the Yeast Papiliotrema terrestris LS28 and Identification of Yap1 as a Transcription Factor Involved in Biocontrol Activity.
    Castoria R; Miccoli C; Barone G; Palmieri D; De Curtis F; Lima G; Heitman J; Ianiri G
    Appl Environ Microbiol; 2021 Mar; 87(7):. PubMed ID: 33452020
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a real-time PCR assay for Penicillium expansum quantification and patulin estimation in apples.
    Tannous J; Atoui A; El Khoury A; Kantar S; Chdid N; Oswald IP; Puel O; Lteif R
    Food Microbiol; 2015 Sep; 50():28-37. PubMed ID: 25998812
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis.
    Calvo J; Calvente V; de Orellano ME; Benuzzi D; Sanz de Tosetti MI
    Int J Food Microbiol; 2007 Feb; 113(3):251-7. PubMed ID: 17007950
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of Penicillium expansum isolates for aggressiveness, growth and patulin accumulation in usual and less common fruit hosts.
    Neri F; Donati I; Veronesi F; Mazzoni D; Mari M
    Int J Food Microbiol; 2010 Oct; 143(3):109-17. PubMed ID: 20800918
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diversity and metabolomic characterization of Penicillium expansum isolated from apples grown in Argentina and Spain.
    Maldonado ML; Patriarca A; Mc Cargo P; Iannone L; Sanchis V; Nielsen KF; Fernández Pinto V
    Fungal Biol; 2022 Sep; 126(9):547-555. PubMed ID: 36008047
    [TBL] [Abstract][Full Text] [Related]  

  • 33.
    Lončarić A; Šarkanj B; Gotal AM; Kovač M; Nevistić A; Fruk G; Skendrović Babojelić M; Babić J; Miličević B; Kovač T
    Toxins (Basel); 2021 Oct; 13(10):. PubMed ID: 34678996
    [No Abstract]   [Full Text] [Related]  

  • 34. Effect of heat shock treatment on stress tolerance and biocontrol efficacy of Metschnikowia fructicola.
    Liu J; Wisniewski M; Droby S; Tian S; Hershkovitz V; Tworkoski T
    FEMS Microbiol Ecol; 2011 Apr; 76(1):145-55. PubMed ID: 21223330
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lentinula edodes enhances the biocontrol activity of Cryptococcus laurentii against Penicillium expansum contamination and patulin production in apple fruits.
    Tolaini V; Zjalic S; Reverberi M; Fanelli C; Fabbri AA; Del Fiore A; De Rossi P; Ricelli A
    Int J Food Microbiol; 2010 Apr; 138(3):243-9. PubMed ID: 20206395
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Patulin is a cultivar-dependent aggressiveness factor favouring the colonization of apples by Penicillium expansum.
    Snini SP; Tannous J; Heuillard P; Bailly S; Lippi Y; Zehraoui E; Barreau C; Oswald IP; Puel O
    Mol Plant Pathol; 2016 Aug; 17(6):920-30. PubMed ID: 26582186
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sensitivity of Penicillium expansum field isolates to tebuconazole, iprodione, fludioxonil and cyprodinil and characterization of fitness parameters and patulin production.
    Karaoglanidis GS; Markoglou AN; Bardas GA; Doukas EG; Konstantinou S; Kalampokis JF
    Int J Food Microbiol; 2011 Jan; 145(1):195-204. PubMed ID: 21251724
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biocontrol ability and action mechanism of Metschnikowia citriensis against Geotrichum citri-aurantii causing sour rot of postharvest citrus fruit.
    Wang S; Ruan C; Yi L; Deng L; Yao S; Zeng K
    Food Microbiol; 2020 May; 87():103375. PubMed ID: 31948616
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficacy of Pichia caribbica in controlling blue mold rot and patulin degradation in apples.
    Cao J; Zhang H; Yang Q; Ren R
    Int J Food Microbiol; 2013 Mar; 162(2):167-73. PubMed ID: 23416552
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Volatile organic compounds from Wickerhamomyces anomalus, Metschnikowia pulcherrima and Saccharomyces cerevisiae inhibit growth of decay causing fungi and control postharvest diseases of strawberries.
    Oro L; Feliziani E; Ciani M; Romanazzi G; Comitini F
    Int J Food Microbiol; 2018 Jan; 265():18-22. PubMed ID: 29107842
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.