BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 38761252)

  • 21. Polyamine homeostasis-based strategies for cancer: The role of combination regimens.
    Li QZ; Zuo ZW; Zhou ZR; Ji Y
    Eur J Pharmacol; 2021 Nov; 910():174456. PubMed ID: 34464603
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polyamine Signal through HCC Microenvironment: A Key Regulator of Mitochondrial Preservation and Turnover in TAMs.
    Liu Q; Yan X; Li R; Yuan Y; Wang J; Zhao Y; Fu J; Su J
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38256070
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolism and function of polyamines in cancer progression.
    Novita Sari I; Setiawan T; Seock Kim K; Toni Wijaya Y; Won Cho K; Young Kwon H
    Cancer Lett; 2021 Oct; 519():91-104. PubMed ID: 34186159
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Significance of targeting polyamine metabolism as an antineoplastic strategy: unique targets for polyamine analogues.
    Casero RA; Frydman B; Stewart TM; Woster PM
    Proc West Pharmacol Soc; 2005; 48():24-30. PubMed ID: 16416654
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A perspective of polyamine metabolism.
    Wallace HM; Fraser AV; Hughes A
    Biochem J; 2003 Nov; 376(Pt 1):1-14. PubMed ID: 13678416
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interrogation of T Cell-Enriched Tumors Reveals Prognostic and Immunotherapeutic Implications of Polyamine Metabolism.
    Harbison RA; Pandey R; Considine M; Leone RD; Murray-Stewart T; Erbe R; Mandal R; Burns M; Casero RA; Seiwert T; Fakhry C; Pardoll D; Fertig E; Powell JD
    Cancer Res Commun; 2022 Jul; 2(7):639-652. PubMed ID: 36052016
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular mechanisms of polyamine analogs in cancer cells.
    Huang Y; Pledgie A; Casero RA; Davidson NE
    Anticancer Drugs; 2005 Mar; 16(3):229-41. PubMed ID: 15711175
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Translational and post-translational regulation of polyamine metabolic enzymes in plants.
    Jiménez-Bremont JF; Chávez-Martínez AI; Ortega-Amaro MA; Guerrero-González ML; Jasso-Robles FI; Maruri-López I; Liu JH; Gill SS; Rodríguez-Kessler M
    J Biotechnol; 2022 Jan; 344():1-10. PubMed ID: 34915092
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced cell growth, production, and mAb quality produced in Chinese hamster ovary-K1 cells by supplementing polyamine in the media.
    Kang DE; An YB; Kim Y; Ahn S; Kim YJ; Lim JS; Ryu SH; Choi H; Yoo J; You WK; Lee DY; Park J; Hong M; Lee GM; Baik JY; Hong JK
    Appl Microbiol Biotechnol; 2023 May; 107(9):2855-2870. PubMed ID: 36947192
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Epidermal growth factor: modulator of murine embryonic palate mesenchymal cell proliferation, polyamine biosynthesis, and polyamine transport.
    Gawel-Thompson KJ; Greene RM
    J Cell Physiol; 1989 Aug; 140(2):359-70. PubMed ID: 2501317
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic and antiproliferative consequences of activated polyamine catabolism in LNCaP prostate carcinoma cells.
    Kee K; Vujcic S; Merali S; Diegelman P; Kisiel N; Powell CT; Kramer DL; Porter CW
    J Biol Chem; 2004 Jun; 279(26):27050-8. PubMed ID: 15096507
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of aminopropyltransferase inhibitors and of non-metabolizable analogs to study polyamine regulation and function.
    Pegg AE; Poulin R; Coward JK
    Int J Biochem Cell Biol; 1995 May; 27(5):425-42. PubMed ID: 7641073
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polyamine Depletion Abrogates Enterovirus Cellular Attachment.
    Kicmal TM; Tate PM; Dial CN; Esin JJ; Mounce BC
    J Virol; 2019 Oct; 93(20):. PubMed ID: 31341056
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dietary and Gut Microbiota Polyamines in Obesity- and Age-Related Diseases.
    Ramos-Molina B; Queipo-Ortuño MI; Lambertos A; Tinahones FJ; Peñafiel R
    Front Nutr; 2019; 6():24. PubMed ID: 30923709
    [TBL] [Abstract][Full Text] [Related]  

  • 35. AMPK-a key factor in crosstalk between tumor cell energy metabolism and immune microenvironment?
    Wang N; Wang B; Maswikiti EP; Yu Y; Song K; Ma C; Han X; Ma H; Deng X; Yu R; Chen H
    Cell Death Discov; 2024 May; 10(1):237. PubMed ID: 38762523
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TGF-β: an active participant in the immune and metabolic microenvironment of multiple myeloma : TGF-β in the microenvironment of multiple myeloma.
    Xue HY; Wei F
    Ann Hematol; 2024 Jun; ():. PubMed ID: 38900304
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro and in vivo effects of the conformationally restricted polyamine analogue CGC-11047 on small cell and non-small cell lung cancer cells.
    Hacker A; Marton LJ; Sobolewski M; Casero RA
    Cancer Chemother Pharmacol; 2008 Dec; 63(1):45-53. PubMed ID: 18301893
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The roles of polyamines in microorganisms.
    Gevrekci AÖ
    World J Microbiol Biotechnol; 2017 Oct; 33(11):204. PubMed ID: 29080149
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Uptake and cytotoxicity of novel nitroimidazole-polyamine conjugates in Ehrlich ascites tumour cells.
    Holley J; Mather A; Cullis P; Symons MR; Wardman P; Watt RA; Cohen GM
    Biochem Pharmacol; 1992 Feb; 43(4):763-9. PubMed ID: 1540230
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The potential of a novel polyamine transport inhibitor in cancer chemotherapy.
    Aziz SM; Gillespie MN; Crooks PA; Tofiq SF; Tsuboi CP; Olson JW; Gosland MP
    J Pharmacol Exp Ther; 1996 Jul; 278(1):185-92. PubMed ID: 8764350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.