BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38761315)

  • 1. Comparative venation costs of monocotyledon and dicotyledon species in the eastern Colorado steppe.
    Drobnitch ST; Kray JA; Gleason SM; Ocheltree TW
    Planta; 2024 May; 260(1):2. PubMed ID: 38761315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linking leaf hydraulic properties, photosynthetic rates, and leaf lifespan in xerophytic species: a test of global hypotheses.
    Li F; McCulloh KA; Sun S; Bao W
    Am J Bot; 2018 Nov; 105(11):1858-1868. PubMed ID: 30449045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The links between leaf hydraulic vulnerability to drought and key aspects of leaf venation and xylem anatomy among 26 Australian woody angiosperms from contrasting climates.
    Blackman CJ; Gleason SM; Cook AM; Chang Y; Laws CA; Westoby M
    Ann Bot; 2018 Jun; 122(1):59-67. PubMed ID: 29668853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmentally based scaling of leaf venation architecture explains global ecological patterns.
    Sack L; Scoffoni C; McKown AD; Frole K; Rawls M; Havran JC; Tran H; Tran T
    Nat Commun; 2012 May; 3():837. PubMed ID: 22588299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydraulic tuning of vein cell microstructure in the evolution of angiosperm venation networks.
    Feild TS; Brodribb TJ
    New Phytol; 2013 Aug; 199(3):720-6. PubMed ID: 23668223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaf palmate venation and vascular redundancy confer tolerance of hydraulic disruption.
    Sack L; Dietrich EM; Streeter CM; Sánchez-Gómez D; Holbrook NM
    Proc Natl Acad Sci U S A; 2008 Feb; 105(5):1567-72. PubMed ID: 18227511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture.
    Scoffoni C; Rawls M; McKown A; Cochard H; Sack L
    Plant Physiol; 2011 Jun; 156(2):832-43. PubMed ID: 21511989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potassium mediates coordination of leaf photosynthesis and hydraulic conductance by modifications of leaf anatomy.
    Lu Z; Xie K; Pan Y; Ren T; Lu J; Wang M; Shen Q; Guo S
    Plant Cell Environ; 2019 Jul; 42(7):2231-2244. PubMed ID: 30938459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monocot leaves are eaten less than dicot leaves in tropical lowland rain forests: correlations with toughness and leaf presentation.
    Grubb PJ; Jackson RV; Barberis IM; Bee JN; Coomes DA; Dominy NJ; De La Fuente MA; Lucas PW; Metcalfe DJ; Svenning JC; Turner IM; Vargas O
    Ann Bot; 2008 Jun; 101(9):1379-89. PubMed ID: 18387972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water supply and demand remain coordinated during breakdown of the global scaling relationship between leaf size and major vein density.
    Schneider JV; Habersetzer J; Rabenstein R; Wesenberg J; Wesche K; Zizka G
    New Phytol; 2017 Apr; 214(1):473-486. PubMed ID: 28005294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding leaf hydraulics with a spatially explicit model: principles of venation architecture and implications for its evolution.
    McKown AD; Cochard H; Sack L
    Am Nat; 2010 Apr; 175(4):447-60. PubMed ID: 20178410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topological Phenotypes Constitute a New Dimension in the Phenotypic Space of Leaf Venation Networks.
    Ronellenfitsch H; Lasser J; Daly DC; Katifori E
    PLoS Comput Biol; 2015 Dec; 11(12):e1004680. PubMed ID: 26700471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leaf hydraulic conductance varies with vein anatomy across Arabidopsis thaliana wild-type and leaf vein mutants.
    Caringella MA; Bongers FJ; Sack L
    Plant Cell Environ; 2015 Dec; 38(12):2735-46. PubMed ID: 26047314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bundle sheath lignification mediates the linkage of leaf hydraulics and venation.
    Ohtsuka A; Sack L; Taneda H
    Plant Cell Environ; 2018 Feb; 41(2):342-353. PubMed ID: 29044569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental regulation of leaf venation patterns: monocot versus eudicots and the role of auxin.
    Perico C; Tan S; Langdale JA
    New Phytol; 2022 May; 234(3):783-803. PubMed ID: 35020214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revealing catastrophic failure of leaf networks under stress.
    Brodribb TJ; Bienaimé D; Marmottant P
    Proc Natl Acad Sci U S A; 2016 Apr; 113(17):4865-9. PubMed ID: 27071104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. grasviq: an image analysis framework for automatically quantifying vein number and morphology in grass leaves.
    Robil JM; Gao K; Neighbors CM; Boeding M; Carland FM; Bunyak F; McSteen P
    Plant J; 2021 Jul; 107(2):629-648. PubMed ID: 33914380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncorrelated evolution of leaf and petal venation patterns across the angiosperm phylogeny.
    Roddy AB; Guilliams CM; Lilittham T; Farmer J; Wormser V; Pham T; Fine PV; Feild TS; Dawson TE
    J Exp Bot; 2013 Oct; 64(13):4081-8. PubMed ID: 23963676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network feature-based phenotyping of leaf venation robustly reconstructs the latent space.
    Iwamasa K; Noshita K
    PLoS Comput Biol; 2023 Jul; 19(7):e1010581. PubMed ID: 37471283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-induced plasticity in leaf hydraulics, venation, anatomy, and gas exchange in ecologically diverse Hawaiian lobeliads.
    Scoffoni C; Kunkle J; Pasquet-Kok J; Vuong C; Patel AJ; Montgomery RA; Givnish TJ; Sack L
    New Phytol; 2015 Jul; 207(1):43-58. PubMed ID: 25858142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.