These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Radiomics and machine learning analysis by computed tomography and magnetic resonance imaging in colorectal liver metastases prognostic assessment. Granata V; Fusco R; De Muzio F; Brunese MC; Setola SV; Ottaiano A; Cardone C; Avallone A; Patrone R; Pradella S; Miele V; Tatangelo F; Cutolo C; Maggialetti N; Caruso D; Izzo F; Petrillo A Radiol Med; 2023 Nov; 128(11):1310-1332. PubMed ID: 37697033 [TBL] [Abstract][Full Text] [Related]
5. CT-Based Radiomics Analysis to Predict Histopathological Outcomes Following Liver Resection in Colorectal Liver Metastases. Granata V; Fusco R; Setola SV; De Muzio F; Dell' Aversana F; Cutolo C; Faggioni L; Miele V; Izzo F; Petrillo A Cancers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406419 [TBL] [Abstract][Full Text] [Related]
6. Contrast MR-Based Radiomics and Machine Learning Analysis to Assess Clinical Outcomes following Liver Resection in Colorectal Liver Metastases: A Preliminary Study. Granata V; Fusco R; De Muzio F; Cutolo C; Setola SV; Dell' Aversana F; Ottaiano A; Avallone A; Nasti G; Grassi F; Pilone V; Miele V; Brunese L; Izzo F; Petrillo A Cancers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267418 [TBL] [Abstract][Full Text] [Related]
7. Computed Tomography-Based Radiomic Features Could Potentially Predict Microsatellite Instability Status in Stage II Colorectal Cancer: A Preliminary Study. Fan S; Li X; Cui X; Zheng L; Ren X; Ma W; Ye Z Acad Radiol; 2019 Dec; 26(12):1633-1640. PubMed ID: 30929999 [TBL] [Abstract][Full Text] [Related]
8. Radiomics textural features by MR imaging to assess clinical outcomes following liver resection in colorectal liver metastases. Granata V; Fusco R; De Muzio F; Cutolo C; Setola SV; Grassi R; Grassi F; Ottaiano A; Nasti G; Tatangelo F; Pilone V; Miele V; Brunese MC; Izzo F; Petrillo A Radiol Med; 2022 May; 127(5):461-470. PubMed ID: 35347583 [TBL] [Abstract][Full Text] [Related]
9. Exploring tumor heterogeneity in colorectal liver metastases by imaging: Unsupervised machine learning of preoperative CT radiomics features for prognostic stratification. Wang Q; Nilsson H; Xu K; Wei X; Chen D; Zhao D; Hu X; Wang A; Bai G Eur J Radiol; 2024 Jun; 175():111459. PubMed ID: 38636408 [TBL] [Abstract][Full Text] [Related]
10. Radiomics predicts response of individual HER2-amplified colorectal cancer liver metastases in patients treated with HER2-targeted therapy. Giannini V; Rosati S; Defeudis A; Balestra G; Vassallo L; Cappello G; Mazzetti S; De Mattia C; Rizzetto F; Torresin A; Sartore-Bianchi A; Siena S; Vanzulli A; Leone F; Zagonel V; Marsoni S; Regge D Int J Cancer; 2020 Dec; 147(11):3215-3223. PubMed ID: 32875550 [TBL] [Abstract][Full Text] [Related]
11. CT-Based Radiomics Analysis Before Thermal Ablation to Predict Local Tumor Progression for Colorectal Liver Metastases. Taghavi M; Staal F; Gomez Munoz F; Imani F; Meek DB; Simões R; Klompenhouwer LG; van der Heide UA; Beets-Tan RGH; Maas M Cardiovasc Intervent Radiol; 2021 Jun; 44(6):913-920. PubMed ID: 33506278 [TBL] [Abstract][Full Text] [Related]
12. Machine learning-based analysis of CT radiomics model for prediction of colorectal metachronous liver metastases. Taghavi M; Trebeschi S; Simões R; Meek DB; Beckers RCJ; Lambregts DMJ; Verhoef C; Houwers JB; van der Heide UA; Beets-Tan RGH; Maas M Abdom Radiol (NY); 2021 Jan; 46(1):249-256. PubMed ID: 32583138 [TBL] [Abstract][Full Text] [Related]
13. Comparative assessment of the capability of machine learning-based radiomic models for predicting omental metastasis in locally advanced gastric cancer. Wu A; Luo L; Zeng Q; Wu C; Shu X; Huang P; Wang Z; Hu T; Feng Z; Tu Y; Zhu Y; Cao Y; Li Z Sci Rep; 2024 Jul; 14(1):16208. PubMed ID: 39003337 [TBL] [Abstract][Full Text] [Related]
14. Machine learning model to preoperatively predict T2/T3 staging of laryngeal and hypopharyngeal cancer based on the CT radiomic signature. Liu Q; Liu S; Mao Y; Kang X; Yu M; Chen G Eur Radiol; 2024 Aug; 34(8):5349-5359. PubMed ID: 38206403 [TBL] [Abstract][Full Text] [Related]
15. CT-based radiomics and machine learning to predict spread through air space in lung adenocarcinoma. Jiang C; Luo Y; Yuan J; You S; Chen Z; Wu M; Wang G; Gong J Eur Radiol; 2020 Jul; 30(7):4050-4057. PubMed ID: 32112116 [TBL] [Abstract][Full Text] [Related]
16. Preoperative prediction for pathological grade of hepatocellular carcinoma via machine learning-based radiomics. Mao B; Zhang L; Ning P; Ding F; Wu F; Lu G; Geng Y; Ma J Eur Radiol; 2020 Dec; 30(12):6924-6932. PubMed ID: 32696256 [TBL] [Abstract][Full Text] [Related]
17. Next-Generation Radiogenomics Sequencing for Prediction of EGFR and KRAS Mutation Status in NSCLC Patients Using Multimodal Imaging and Machine Learning Algorithms. Shiri I; Maleki H; Hajianfar G; Abdollahi H; Ashrafinia S; Hatt M; Zaidi H; Oveisi M; Rahmim A Mol Imaging Biol; 2020 Aug; 22(4):1132-1148. PubMed ID: 32185618 [TBL] [Abstract][Full Text] [Related]
18. EOB-MR Based Radiomics Analysis to Assess Clinical Outcomes following Liver Resection in Colorectal Liver Metastases. Granata V; Fusco R; De Muzio F; Cutolo C; Setola SV; Dell'Aversana F; Ottaiano A; Nasti G; Grassi R; Pilone V; Miele V; Brunese MC; Tatangelo F; Izzo F; Petrillo A Cancers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267544 [TBL] [Abstract][Full Text] [Related]
19. CT texture analysis for the prediction of KRAS mutation status in colorectal cancer via a machine learning approach. Taguchi N; Oda S; Yokota Y; Yamamura S; Imuta M; Tsuchigame T; Nagayama Y; Kidoh M; Nakaura T; Shiraishi S; Funama Y; Shinriki S; Miyamoto Y; Baba H; Yamashita Y Eur J Radiol; 2019 Sep; 118():38-43. PubMed ID: 31439256 [TBL] [Abstract][Full Text] [Related]
20. Computed Tomography-Based Radiomics Model to Predict Central Cervical Lymph Node Metastases in Papillary Thyroid Carcinoma: A Multicenter Study. Li J; Wu X; Mao N; Zheng G; Zhang H; Mou Y; Jia C; Mi J; Song X Front Endocrinol (Lausanne); 2021; 12():741698. PubMed ID: 34745008 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]